andrew purves
planning & resource management

PO Box 33010 Barrington 8244 Christchurch

phone: 03 960 7088 mobile: 021 297 9659 andrewpurves2@outlook.com

15 March 2019

C/0 Oceana Gold (New Zealand) Limited Gavin Lee Golden Point Road RD 3 Macraes Flat 9483

Dear Gavin

Proposed Extension of the Coronation North pit and reconfiguration of waste rock stacks - Request for Further Information

LUC-2019-42 LUC-2016-230/B LUC-2013-225/B 201.2019.1241 201.2016.779.1 201.2013.360.2

Thank you for your application for a landuse consent on the above. After initial assessment of your application, the Dunedin and Waitaki District Councils have determined that further information is required pursuant to section 92 of the Resource Management Act 1991.

Requested information:

The further information required is detailed below. It will help the Council to better understand your proposed activity, its effect on the environment and the ways any adverse effects on the environment might be mitigated, and determine whether any persons are affected by the proposed extension.

1. Maps

Figures 1-2 and 1-3 are useful in showing project elements and also the consented and proposed consented area. However, additional maps are needed to clearly set out the extension and the amended waste rock footprints associated with the proposal, which can also be attached to the conditions of consent, if granted.

- 1a. Please provide a sufficiently large-scaled map that shows the existing consented boundary of the Coronation pit and the area subject to the extension. Please also provide on the same map the proposed Trimbells waste rock stack.
- Please provide amended Figures 1 and 2 and Map 1 of LUC-2016-230 and 201.2016.779 which shows those parts of the waste rock stack to be removed.

1c. Please provide an amended Plan 1 as LUC-2013-225 and 201.2013.360 as required.

2. Matheson Road Alignment and Temporary Pedestrian Access

Clarification is sought on whether the alignments of Matheson Road or the temporary pedestrian access shown on the consented maps need to be amended.

2a. Please place the final Matheson Road alignment and temporary pedestrian access on the maps provided under question 1a and 1b and confirm (or otherwise) that the alignments are not to be changed.

3. Pit Wall Stability Layback

The AEE states the Coronation North pit wall has been unstable and as a consequence a 'Pit Wall Stability Layback' is proposed to ensure the safe removal of ore from the pit. However, there is no detailed description of how the layback is to be constructed nor does there appear to be any geo-technical assessment of the cause of the existing instability and the stability achieved from the layback.

- 3a. Please provide geotechnical information from an appropriate expert on the reasons why the current pit wall is unstable.
- 3b. Please detail how the pit wall stability layback is to be constructed and also the sequence of construction in relation to other pit extraction and backfill work.
- 3c. Please provide a geotechnical assessment from an appropriate expert of expected stability outcomes after the pit wall stability layback has been constructed.
- 3d. Please assess any residual risk to the public from instability in the long-term and whether any mitigation is required.

4. Landscape

The Coronation North waste rock stack is being constructed and rehabilitation has commenced with the placement of topsoil on the base and the establishment of exotic pasture. According to the consent conditions of the Coronation North project (i.e. LUC-2016-230), the construction of the stack is to be in accordance with a suite of design principles that refer to the slopes of the stack being 'suitably shaped in crossprofile to match nearby natural slopes' and that 'the skyline is to be variable and curved, simulating natural skylines'.

To date the cross profile of the Coronation North waste rock stack has a lineal form, with a consistent gradient (approximately 1:3), as is reflected in the visual simulations prepared by Opus Consultants (refer Oceana Gold: Coronation North project – Landscape and Visual Assessment. Viewpoint 12 Enlargement – Photo Simulation. April 2016).

4a. Please confirm that ongoing rehabilitation of both the Coronation North Waste Rock Stack and the proposed Trimbells Waste Rock Stack will observe the existing consent condition requirement that they are shaped to "match nearby natural slopes" and the "the skyline shall be variable and curved, simulating natural skylines" (Consent Condition 4.4).

The applicant has informally mentioned the possibility of applying topsoil to the Trimbells waste rock stack with tussock grass seed as a method to establish tussock vegetation on this new stack. The landscape and visual effects report does not address this matter other than stating that "rehabilitation programmes will remain as previously planned and consented".

Condition 4.11 of LUC-2016-230/201 and 201.2016.779 states that the consent holder shall revegetate with both exotic pastoral species and at least three tussock species which are as far as practicable sourced from the Macraes Ecological District.

4b. Please confirm whether it is proposed to apply tussock seed laden topsoil to the Trimbells waste rock stack to establish a cover of tussock on this new feature. If this is the case, please provide further information regarding this technique to illustrate how it will successfully result in a cover of tussock, with supporting evidence that it has been successfully applied elsewhere, either nationally or internationally.

Alternatively, please confirm that it is intended that the rehabilitated vegetation cover of the Trimbells waste rock stack will be the same a combination of the exotic pasture and tussock. Please provide an indication of the extent of tussock verse exotic planting in both the existing Coronation North waste rock stack as well as the proposed Trimbells gully waste rock stack.

5. Ecology

The mapping provided in the application would be more informative by clearly identifying:

- The extent of indigenous vegetation as defined by the operative and proposed district plan and
- Significant indigenous vegetation and significant habitats of Indigenous fauna as
 defined by the district plan which are located within extension and relevant waste
 rock footprints.

There also appear to be discrepancies in the areas provided in the ERA Letters and the AEE and so needs to be checked and confirmed. Furthermore, the AEE appears to be internally inconsistent i.e.

- i. Paragraphs 1 and 4 on page 17 of the AEE, when discussing section 6(c) of the Act, state no new significant areas or species have been encountered either in the area of the proposed pit extension or within the project's footprint overall. However, Section 6.1.1 on page 31 lists four nationally threatened (at risk) plant species that weren't identified in the original Coronation North EIA due to a subsequent change in status under the national threat classification system; and
- ii. Paragraph 7 on page 20 of the AEE states that there have been "no significant terrestrial ecology values identified in the extended pit project area" whereas Paragraph 1 on page 33 states that some of the vegetation in the proposal is categorised as significant.

Section 3 of the ERA Ecology file note dated 17 January 2019 states that "This vegetation at this site is categorised as significant under the proposed ORC Regional Plan and DCC District Plans as it is inhabited by some rare species". However, it is unclear whether this statement applies to a specific part of the proposal area or the unconsented areas of the proposal generally.

5a. Please clearly identify by way of larger-scale maps the spatial extent of the various indigenous vegetation communities within

the proposed extension area and the communities being retained as a consequence of changes in the waste rock stack footprints;

- 5b. Please clearly identify by way of larger-scale maps the spatial extent of areas of significant indigenous vegetation and significant habitats of indigenous fauna as defined by the district plans within the proposed extension area and those areas being retained as a consequence of changes in the waste rock stack footprints.
- 5c. Please detail the hectares involved for areas identified under questions 5a and 5b.

Further details of the species present and the ecological value of the basalt contact seepage wetland being lost by the extension is needed in order to adequately assess the actual or potential effects on the environment. Further detail is also required on the proposed rehabilitation options for the Highlay Hill Covenant wetland.

- 5d. Please provide further details of the species present and the ecological value of the basalt contact seepage wetland being lost by the extension.
- 5e. Please provide further detail on the proposed rehabilitation options for the Highlay Hill Covenant wetland.

6. Noise

Section 6.5 of the AEE briefly discusses the effects on amenity and concludes the proposed extension will not result in measureable changes from that experienced for the existing Coronation North project. The reason for this conclusion is that the location and intensity of mining, including use of the haul road, will remain the same.

The AEE states in response to concerns about night-time noise raised by Craig and Erin Howard no hauling of ore at night is occurring and will not occur until such time as an agreement can be reached between the Howards and Oceana Gold.

However, no updated assessment of noise in particular has been provided in the AEE nor any results of monitoring which is required under the existing conditions of consent.

6a. Please provide the results of noise monitoring performed since the commencement of the Coronation North project and please provide an updated assessment on the actual and potential effects from noise on the environment from an appropriate expert.

Please do not hesitate to contact the author if you have any questions or concerns regarding the above request or the further processing of the application.

Yours faithfully

amhines

Andrew Purves (Planning Consultant on behalf Dunedin City Council and the Waitaki District Council)

5 April 2019

Dunedin City Council PO Box 5045 Moray Place Dunedin 9058

Dear Andrew

PROPOSED EXTENSION OF CORONATION NORTH PIT AND RECONFIGERATION OF WASTE ROCK STACKS - REQUEST FOR FURTHER INFORMATION

Referring to DCC's letter dated 15 March 2019, the following provides the response to the request for information related to Maps, Matheson Road Alignment and Temporary Pedestrian Access, Pit Wall Stability Layback, Landscape, Ecology and Noise. Where necessary specialists' reports have been prepared in response to the request and these reports are featured in the appendices to this letter.

1. Maps

In response to the request, the following maps have been prepared and can be found in Appendix I.

- Coronation Pit and Trimbells Waste Rock Stack on large scale, titled 'Coronation North Extension 2019 Project WDC/DCC LUC Consents'.
- Amended from LUC-2016-230 and 201.2016.779, Figures 1 titled 'Macraes Gold Project, Coronation North Extension S-92 Figure 1b', Figure 2 titled 'Coronation North Extension: 2019 WDC/DCC Roading' and Map 1 titled 'Coronation North Extension Proposed Pit Extension and Waste Rock Stack.'
- Amended Plan 1 from LUC-2016-230 and 201.2016.779, titled 'Coronation North Extension: March 2019 WDC/DCC Land Use Consent Plan 1'.

2. Matheson Road Alignment and Temporary Pedestrian Access

The final Matheson Road Alignment will be modified very slightly with the re-design of the Waste Rock. The changes will be in the slight elevation changes over the Trimbells Waste Rock Stack however the alignment remains close to the crest of the Taieri ridge. The alignment should not lead to any discernible changes in traffic time when compared with that of the originally consented alignment for the Coronation North Project.

The Temporary Pedestrian Access has been modified on the eastern alignment to allow for potential pit wall instability. Changes to the alignment remain limited to approximately 250m of track.

3. Pit Wall Stability Layback

A response to the Pit Wall Stability Layback request has been prepared by Andrew Winneke, OceanaGold Geotechnical Engineer, and is presented in Appendix II.

4. Landscape

a) As per Consent Condition 4.3 of land use consent¹, a report was prepared by Opus International Consultants Ltd and submitted to the DCC on 21st June 2017.

The Landscape Report responded to Condition 4.7 in particular and has been referenced in OceanaGold's Coronation North Operations and Management Plan to ensure when the Coronation North WRS is constructed, OceanaGold achieve the final form to meet landscape compliance.

Section 3.1.3. Condition 4.7 (c) A detailed discussion on how the proposed waste rock stack meets the principles set out in condition 4.4 (a) – (f) of the 2017 Landscape Report responds to the various clauses of Consent Condition 4.4. What is stated there has followed through to what is now proposed altered Coro Nth WRS and the proposed Trimbells WRS. As with the altered WRS, the proposed WRS, will be shaped to match nearby natural slopes and the skyline shall be variable and curved, simulating natural skylines.

As noted in Appendix D of the Assessment of Environmental Effects for the Coronation North Extension Project:

In regard to the proposed Coronation North Expansion, the potential waste rock stack-related landscape and visual effects will remain much as before, but with the lesser landscape effect of having a strip of land left untouched between what would be the smaller, stand-alone Coronation WRS and the proposed Trimbells WRS. While this strip of land is not directly visible from Vpt 12 on Longdale Road, it's retention will have positive ecological outcome.

b) Sections of the Trimbells Waste Rock stack will utilise the seedbank contained in the freshly stripped topsoil to return the surface to a similar vegetation community to the pre-mining condition. This practice is commonly known as 'direct return' of topsoil. It is not expected that the entire Waste Rock Stack will be covered with native vegetation, only those sections where direct return of topsoil is possible.

It is well understood within the mining industry that use of topsoil as soon as possible after stripping has significant benefits including maintaining the viability of the seedbank contained within the topsoil. These benefits (of direct return) are highlighted in the Landcare Report, 'Guidelines for mine rehabilitation in Westland'². In addition, a 2016 study conducted on mine land rehabilitation³ found that the native seed bank contained within topsoil is a valuable resource in post-mining rehabilitation and that seedling emergence of perennial species was more than 4-fold greater in fresh topsoil than in the 1-year-old stockpiles.

Annual monitoring will be conducted on the slopes and compared with references sites close by to determine appropriate densities of tussock are being met. In the event that monitoring shows the rehabilitation is not meeting densities within reference sites, planting will be undertaken

5. Ecology

Responses to the information requests related to ecology have been prepared by Dr Mike Thorsen (ERA Ecology) and are presented in the Appendix III.

¹ CORONATION & CORONATION NORTH" – OCEANA GOLD (NEW ZEALAND) LTD, WDC Reference: 201.2016.779 and 201.2013.360.1 and DCC Reference: LUC-2016-234 and LUC-2013-225A.

² Simcock, R, Ross, C. Guidelines for mine rehabilitation in Westland. 2014. Landcare Research https://www.wcrc.govt.nz/Documents/Environmental%20Management/Guidelines%20for%20mine%20rehabilitation%20in%20Westland. pdf

³ Golos, P. J., Dixon, K. W. and Erickson, T. E. (2016), Plant recruitment from the soil seed bank depends on topsoil stockpile age, height, and storage history in an arid environment. Restor Ecol, 24: S53-S61. doi:10.1111/rec.12389

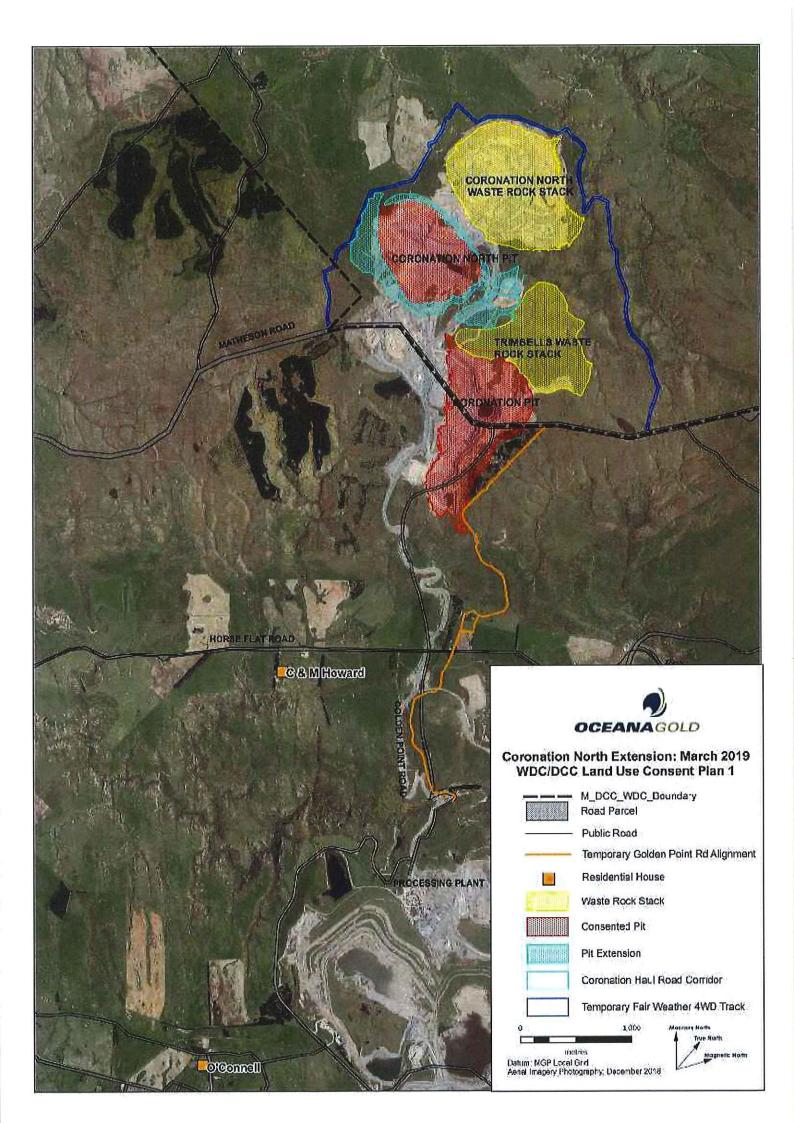
6. Noise

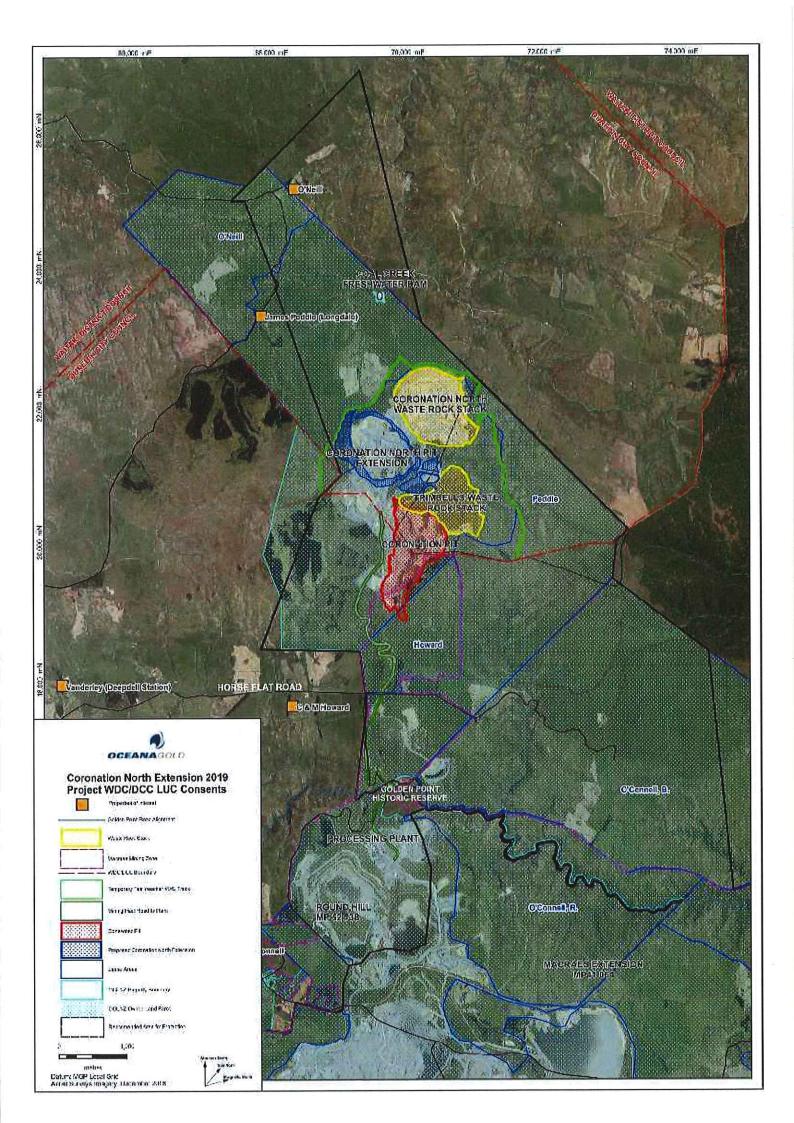
Attended noise monitoring results (ie results from a hand-held meter) are presented in Appendix IV.

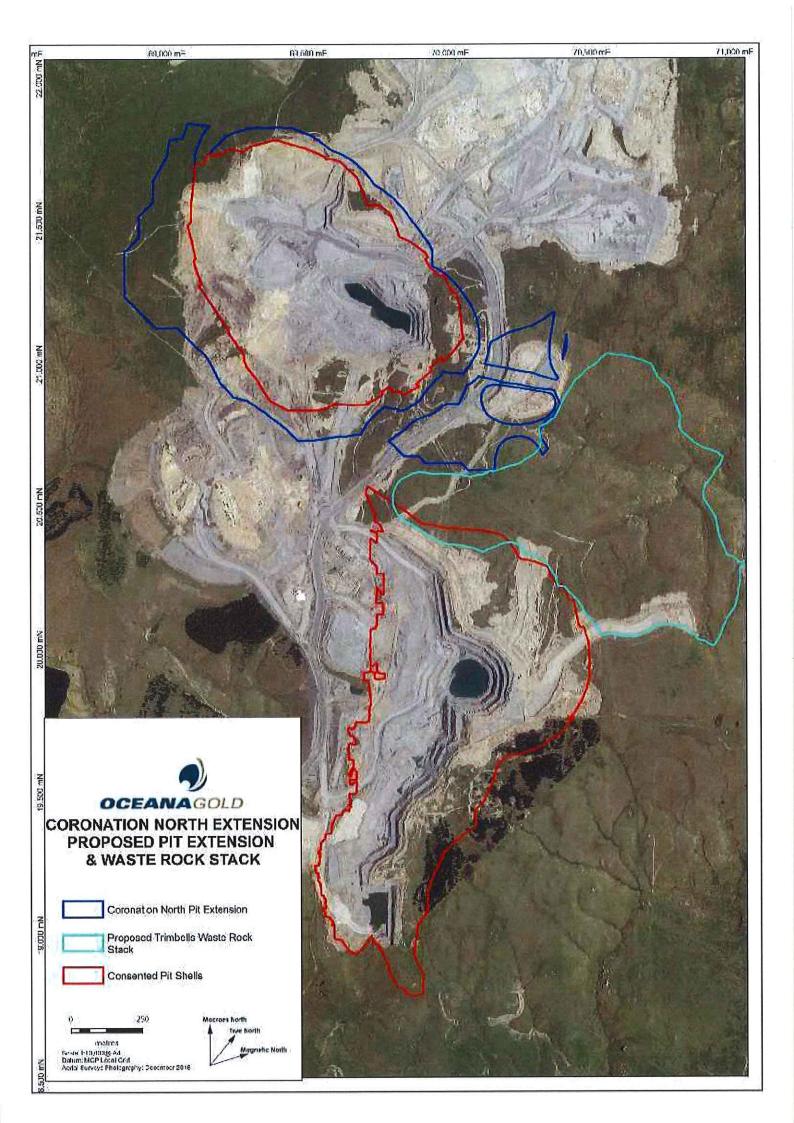
Following concerns about night time noise raised by the closest affected party, Craig and Erin Howard, OceanaGold installed an unattended monitor close to the Howards residence between November – December 2017 and February – March 2018. Due to privacy concerns raised by the Howards, this meter was not installed at the compliance location (ie 20m from the dwelling) and was used for management purposes to further understand the night time noise issue.

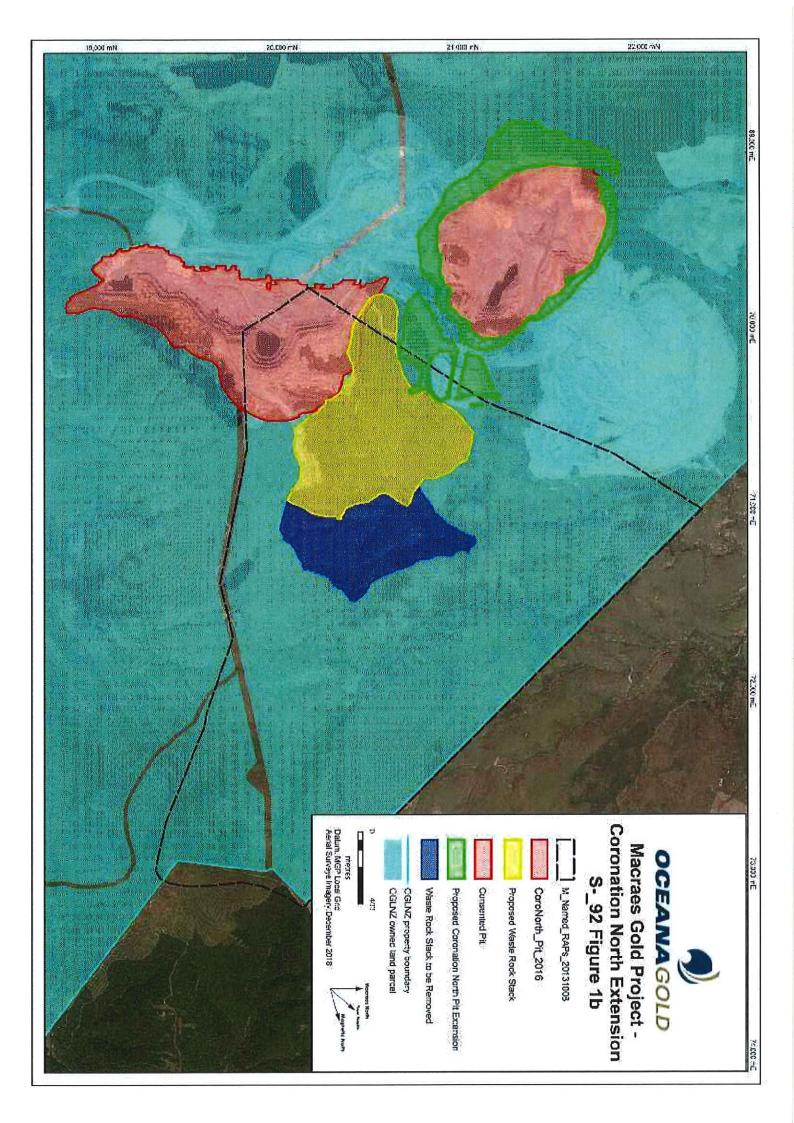
After further negotiations with the Howards, an unattended noise monitor was installed at the compliance location. This noise monitor was used in conjunction with a weather station to provide realtime feedback to OceanaGold's Mine Control centre, to manage the noise level from mining activities and track compliance. A summary of this monitoring is contained in the report 'Response to MDA peer review queries', prepared by Acoustic Engineering Services and presented in Appendix V.

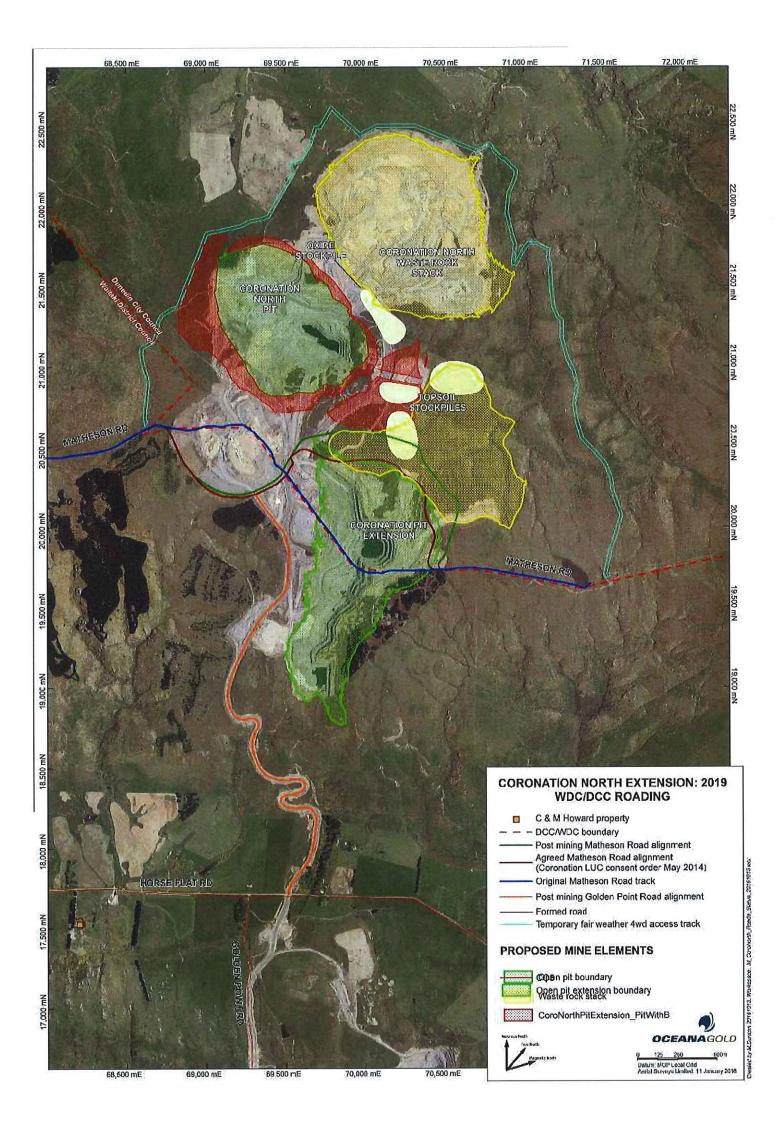
Finally, updated noise modelling of the Coronation North Extension, completed by Acoustic Engineering Services, is presented in Appendix VI. As indicated in the Assessment of Environmental Effects, OceanaGold is committed to no night time hauling until an agreement has reached with the Howards.


Every effort has been made to provide the most up to date information for this request for information. Should there be any further changes in design or conditions, I will endeavour to inform you as soon as possible.


Yours Sincerely


Gavin Lee


Community and Environment Manager


Appendix I Maps

Appendix II Memo on Response to Request for Geotechnical Information on Coronation North Extension

MEMORANDUM

To: Gavin Lee

From Andrew Winneke, Geotechnical Engineer

Item: Response to Request for Geotechnical Information on Coronation North Extension

Date: 5th April 2019

Dear Gavin

The following memo is in response to the request for information from the Dunedin City Council for the Coronation North Extension Consent Application.

3a Reasons why the pit wall is unstable

Excavation of the Coronation North (CRN) Stages 1 and 2 pits revealed significant areas of weak materials that failed in modes that were unexpected and therefore not reflected in earlier pit designs. As a result, further exploration drilling and mapping was undertaken in the Stage 3 Pit and finally redesigned early in 2018 to reflect these areas of weakness and to improve slope performance. The primary redesign referred to areas of ground around the western margin of the final pit walls indicated in the plan below (Figure 1).



Figure 1. Aerial view of the Coronation North pit showing the area required to be laid back.

Instability in this area is largely the result of a band of saprolitic schist rock that underlies the sediments and volcanic/pyroclastic material in this region of the pit. The inherent weakness of the saprolite is the combined result of weathering, high clay content, and relict foliation planes. The foliation unfavourably

dips into the pit-void in this area. The underlying un-weathered schist rock behaves in much the same way as the rest of the grey schist rock in the Macraes region.

3b Construction and sequence

The redesign was essentially aimed at projecting the base of the saprolite up to the topographical surface at the typical angle of foliation dip, i.e. around 17 - 20° below horizontal (Figure 2). The weak materials, which includes deeply weather volcanic ash and boulders, sediments as well as the saprolite (typically around 20 m total thickness in the pit wall area) were excavated at 17 - 20°. The overall wall has since remained stable. Mining of the layback was conducted simultaneously with mining of the remaining pit.

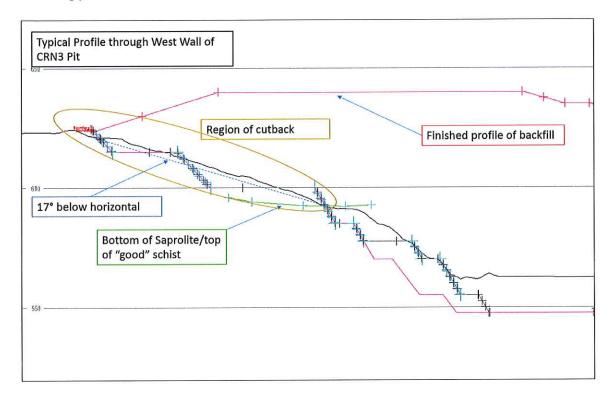


Figure 2. Section through the west wall showing the re-designed slope.

3c Expected outcomes

The "as built" slopes are generally expected to remain stable without significant tension-cracking beyond the present pit crest though localised areas of "creep" movement (e.g. in response to heavy rain events) from time to time may occur. Further, the planned back-filling of this area of the Stage 3 pit during mining of stage 4, with un-weathered schist rock, will complete the long-term stability of these weak wall zones.

3d Residual risk

There is no known structural mechanism that might lead to instability in the long-term, post-closure Coronation North pit area. The back-fill covers this area (See Figure 2).

Andrew Winneke

Geotechnical Engineer

Appendix III Memo on Response to Ecological Questions in the Coronation North Extension

Reference:

19 March 2019

Gavin Lee OceanaGold

Dear Gavin,

Re: Response to ecological questions in the Coronation North Extension Section 92 request from Dunedin City Council 15 March 2019

The responses to the DCC S92 request for the Coronation North Extension project are:

Q. 5a. Please clearly identify by way of larger-scale maps the spatial extent of the various indigenous vegetation communities within the proposed extension area and the communities being retained as a consequence of changes in the waste rock stack footprints.

See file CoronationNorthExtension_S92_Vegetation_UnconsentedExtension.jpeg for a larger-scale map of the vegetation within the unconsented area of the Coronation North pit extension area, file CoronationNorthExtension_S92_Vegetation_UnconsentedTrimbells WRS.jpeg for a larger-scale map of the vegetation of the Trimbells WRS unconsented area, and file CoronationNorthExtension_S92_Vegetation_GiveUpArea.jpeg for a larger-scale map of the vegetation within the area now being retained.

Q. 5b. Please clearly identify by way of larger-scale maps the spatial extent of areas of significant vegetation and significant habitats of indigenous fauna as defined by the district plans within the proposed extension area and those areas being retained as a consequence of changes in the waste rock stack footprints.

As stated in the file note Terrestrial biodiversity of Coronation North Pit Extension, Trimbells WRS and impact of Extension and WRS dated 17 January 2019 and the Coronation North Project Ecological

Impact Assessment to which the file note refers, ALL of the vegetation within the Coronation North Extension is considered significant under the DCC District Plans and the Proposed Otago Regional Policy Statement as they harbour rare plant and animal species as described in that file note.

To provide further detail the following comments are made:

While no Areas of Significant Conservation Value have been identified under Schedule 25.4 of the operative DCC District Plan, all of the areas (or parts thereof) under consideration meets all the listed criteria excepting criteria (a) (existing protected areas) and (c) (sites listed by ORC as having significant conservation value), and would qualify for nomination to such a listing.

All of the areas (or parts thereof) under consideration meets criteria c. i. (rare species), ii. (rare LENZ; see file CoronationNorthExtension_S92_LENZ.jpg for map of this feature), iii. (originally rare wetlands: seepages); d. (representativeness); e. iii. (distinctive vegetation: basalt seepage wetlands); g. (species diversity; give-up area only) listed in Policy 2.2.3.2 of the 2GP Plan (appeals version).

All of the areas (or parts thereof) under consideration meets criteria I (representativeness); 2. a. (rare species), b. (rare LENZ; see file CoronationNorthExtension_S92_LENZ.jpg for map of this feature), c. (originally rare ecosystems: seepages; excepting the give-up area); 4. c. (distinctive vegetation: basalt seepage wetlands; pit extension area only) listed in Schedule 4 of proposed Otago Regional Policy Statement (decisions version).

No maps in addition to those produced in response to Q. 5a. are needed as all of the vegetation on these maps is considered significant as meeting one or more of the criteria in the District Plans and proposed Otago RPS.

Q. 5c. Please detail the hectares for areas identified under questions 5a and 5b.

Vegetation Type	Coronation Pit Extension (Unconsented Area)	Trimbells WRS (Un- consented Area	Overlap between unconsented areas of the Extension and WRS	Give-Up area
Basalt contact seepage wetlands	1.5			
Bluff vegetation	1.3			2.0
Gully Slope Mosaic	0.1			
Narrow-leaved tussock grassland	23.3	17.4	0.1	50.1
Riparian herbfield & sedgeland	0.7	0.1	0.0	0.4
Seepage wetlands		0.1		
Short tussock grassland	12.4			
Shrubland	1.7			
Grand Total	39.9	17.6	0.1	52.6

Table 1. Extent (in hectares) of vegetation communities with the areas identified under questions 5a and 5b. Note: there is a small area of overlap between the unconsented portions of the pit extension and Trimbells WRS which needs to be removed from the totals for these sites.

Q. 5d. Please provide further details of the species present and the ecological value of the basalt contact seepage wetland being lost by the extension.

These wetlands are described in Section 5.2.1.2 of the Coronation North Project Ecological Impact Assessment to which the file note *Terrestrial biodiversity of Coronation North Pit Extension, Trimbells WRS and impact of Extension and WRS* dated 17 January 2019 refers. This description is repeated here:

"The basalt contact seepage wetlands at the basalt/schist rock contact zone of the Sisters Peak cone cover 3.9ha, and are comprised of a mix of indigenous and native herbs, sedges, rushes and grasses, such as Carex gaudichaudiana, Ranunculus glabrifolius, Juncus effusus, Eleocharis acuta, Juncus articulatus, areas of Carex coriacea sedgeland, and they are often bordered by Carex testacea. These wetlands are often heavily pugged by cattle, which results in the formation of raised hummocks.

This natural vegetation community appears to be classified by Singers and Rogers (2014) as WL22: Carex, Schoenus pauciflorus sedgeland. The wider distribution of this wetland community, where it is formed through seepage of water flowing along the contact zone between schist basement rock and overlying basalt rock, is unknown. Basalt cones overlying schist are present at several localities in eastern Otago and it is possible that this vegetation community is present at some of these sites. In species composition and hydrological function is analogous to schist-based seepage wetlands that are scattered throughout Central Otago."

The Coronation North Project Ecological Impact Assessment considered this form of wetland a rare ecosystem type, as a National Priority for Protection (Ministry for Environment and Department of Conservation 2007) and as significant under the operative DCC District Plan and ORC Regional Plan: Biota. It was considered that the Coronation North Project would have an effect: "Water draw-down and altered subsurface flow along the basalt-schist contact zone resulting from construction of the Coronation North pit is expected to result in the drying of 3.9ha of basalt contact seepage wetlands which will change the species composition and cover towards plant species better adapted to moist, rather than wet, soil moisture."

Recent visits to these sites appear to show that these sites have to some degree become de-watered and some species, mainly the exotic rush *Juncus articulatus* and the indigenous *Carex dipsacea* appear to have proliferated (though some changes observed may also be a result of the cessation of grazing in the area).

This vegetation type is also now known to occur within the nearby Highlay Hill Covenant.

Q. 5e. Please provide further detail on the proposed rehabilitation options for the Highlay hill Covenant wetland.

The basalt contact seepage wetlands in the Highlay Hill Covenant are of higher indigenous species diversity, several very rare species, and lower weed-loading. It is proposed that in two of these wetlands that:

- 1)A weed surveillance programme be initiated to detect any arrival of wetland-transforming species (such as the rush *Juncus subnodulosus* and the grass *Narduus stricta* that are both known from rare sites within the Macraes E.D.).
- 2) Rare indigenous species present in the Coronation North seepages but rare or absent from the Highlay Hill seepages are introduced into the Highlay Hill seepages. Currently only the sedge *Carex testacea* "red" would fit these criteria. Previous translocation of the ecologically-

similar *Carex kaloides* in the Tipperary Creek has been successful with 100% survival of translocated plants for at least 5 years post translocation. It is thought translocation of *Carex testacea* "red" would similarly have a high chance of success.

Yours sincerely,

Dr Michael J. Thorsen

Director & Principal Ecologist

M- Hum

ERA Ecology NZ Ltd

Plant Species of Interest Vegetation of Unconsented Area Coronation North Pit Extension Coronal wy Yardhi Extension (Umwinservice Area) Map produced by Mike II oraci 2019/0315 NC 14 Fig. edicir Sin_oked Diesely adole Allen Ephenical excland Daugad Physics are plantation Elumente de Santa have combine suppose we lands PULL AS & SOUTH Data Deferent Hat. all, Avairan Della N Nations y Endangered Nature y Grided Share cussions providence Sexpagn wet area Bipar a distalled I & velydam Native-read Leak greening Maro = 7 %, rerain Paper pagere ERA ECOLOGY OceanaGold Project 1-1000C 250 m

1354000

Appendix IV Noise Monitoring Results

THE THIRD THE TAXABLE PARTY OF TAXABLE PA			•							-	Howard Property							•						Data Point
27/07/2018 21:00	2/04/2018 9:00	2/04/2018 4:02	27/07/2018 21:00	29/07/2018 3:30	2/04/2019 3:25	31/07/2018 22:00	1/08/2018 0:00	2/04/2019 12:07	2/04/2018 3:25	16/07/2018 22:35	16/0//2018 22:15	19/07/2018	24/07/2018 22:30	25/07/2018 03:25	26/07/2018 21:10	26/07/2018 04:30	26/07/2018 00:40	27/07/2018 04:02	27/07/2018 21:00	29/07/2018 03:25	31/07/2018 22:04	01/08/2018 00:07	20/03/2019	Time
37.7	58.2	37.7	58.2	41.1	41.1	64	33.4	33.4	0	43	46	46.8	47.5	29.3	37.3	44	42.5	37.7	58.2	41,1	64	33,4		LAeq
57.2	71.6	57.2	71.6	56	56	80.8	52	52	0	64.9	72.7	64.8			64.1	57.6	71	57.2	71.6	56	80.8	52	34.1	Lmax(dB)
51.5	61	51.5	61	44	44	67.5	34	34	0			49			40	47	44.5	51.5	61	44	67.5	34	22.4	L10(dB)
41	51.5	41	51.5	35.5	35.5	50	28	28	0			33.5		m==0000000000	32	38.5	34.5	41	51.5	35.5	50	28	22.1	(ap)567
45.5	56.5	45.5	56.5	40	40	59.5	30	30	0			41			35	4.5	40.5	45.5	56.5	40	59.5	30	21.7	L50(dB)
High wind	SW, Strong Winds, 10m/s	SW, High South westerly wind	Windy	Light breeze	SW, Light breeze	Clear & windy	Clear, light wind	East, Clear, Light Wind	Heavy fog to ground level	Wind noise, 8m/s	Wind in the trees, 5.8m/s	No wind	Fog	Frosty, still	Light wind	Calm	Calm	High SW Wind	Windy, 10m/s	Light breeze	Clear & windy	Clear, light wind	Very still, humid	Weather Conditions
19 mm and 4/4/m/s				THE WAYNER AND THE PROPERTY OF			TO THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRES		Sheep in paddock bleeting	•		Sheep in the paddock	Sheep in the paddock.	Sheep in the paddock mostly quite	1117/0111/04/20/20/20/20			TAMES AND	THE PROPERTY CONTRACTOR OF THE PROPERTY CONTRACT	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT			THE PROPERTY OF THE PROPERTY O	Comments

																									111111111111111111111111111111111111111
17/08/2017 15:53	19/09/2017 15:05	30/01/2018 12:00	31/01/2018 11:02	22/03/2018 20:51	27/03/2018 10:30	2/04/2018 9:10	4/06/2018 11:36	4/06/2018 15:40	18/06/2018 13:56	16/07/2018 10:00	16/07/2018 10:30	2/04/2019 10:15	2/04/2019 10:35		19/07/2018 10:00				2/04/2019 10:01	24/07/2018 22:30	25/07/2018 3:30	25/07/2018 10:00	26/07/2018 0:30	26/07/2018 4:30	26/07/2018 21:00
42.8	41.9	52.5	56.8		44.2	37.3	41.1	42.8	35.5	43	46	46	43		46.8				46.8	47.5	29.3	47.5	42.5	44	37.3
56.6	54.4	73.8	76.2	34.1	59.2	64.1	68.5	62.1	49	64.9	72.7	72.7	67.9		67.4				67.4			68	71	57.6	64.1
46	44.5			22.4		40	43	45					0	,	49	17			49			50	44.5	47	40
33.5	36.5			22.1		32	31.5	33					0	i i	33.5				33.5			38	34.5	38.5	32
41	40.5			21.7		35	37.5	38					0	ì	41				41			45	40.5	42.5	35
5% Cloud W 4m/s	90% cloud NE 5 km/h	5% cloud	5% cloud	Very still, Humid, No Fog & Rain		Light Southerly Wind			0% cloud 0 wind	Wind noise	Wind noise in trees	NW, 58 Knots	Clear, 8m/s	No wind.	Sheep in paddock.				Northerly wind 0%	Fog	Frosty	Calm clear night.	11.0	· · · · · · · · · · · · · · · · · · ·	11 M P A 12 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A
Some tree noise	**************************************	Trucks running to plant. Some wind noise. Trucks not very noisey.	Medium wind noise in trees	Clear visability. Little bit of sheep movement. Recorded by CBoyt			THE PRODUCTION OF THE PRODUCTI	THE PARTY OF THE P	Light road noise			Wind noise in trees	Wind noise		7	paddock this is not an accurate reading.	than normal but with the	wind so drone from the trucks does seem louder	Sheep in paddock. No	11.4.4			THE PROPERTY OF THE PROPERTY O	T POMPHANISA A V	

	21/04/2017 0:00	25/07/2017 11:03
	38.4	69.9
	74.8	70.3
	35.5	43
	27.5	31
	31	37
m/s	Clear, Clam, warm, 1	37 10% cloud W 2 m/s
noise audible - trucks hauling, duck noise from dredge pond	31 Clear, Clam, warm, 1 Paused for vehicles, Mining	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1	Peddie 17/07/2017 12:17	25/07/2017 11:59	17/05/2017 11:03		22/03/2019 22:43	O'Neill 22/03/2019 23:13 Property	18/04/2018 10:18	8/03/2018 0:38	8/03/2018 0:17	Data Point Time L£
40	30.6	71.8	39.7		40	29.3	41.3			LAeq Lr
68	51.6	60.2	64.8		89	54.2	61.1	55.7	49.5	Lmax(dB)
33	33	46	43.5		33	25				L10(dB)
22.5	23	30	25		22.5	21				L95(dB)
24.5	26	38	33		24.5	21.5				L50(dB)
Overcast, Still, Nil Wind	0% cloud SW 2m/s	15% cloud NW 5 m/s	20% cloud NW 3m/s		Nil Wind, Overcast, Still	Overcast, Nil Wind Speed, Overcast	80% cloud N 6 kmh	Slight fog	Slight fog	Weather Conditions
Bull in paddock and clicking electric fence. Recorded by	Night monitoring		Tested at DG22	but minimal other than 3-4 horn blasts. Electric fence clicking in shed 30m. Recorded by Ryan Biard.	Bull and Electric fence inaudible	Odd Sheep, Pretty quiet - Recorded by Ryan Biard	Windy. Dogs barking	One frog & one sheep making noise	One frog & one sheep making noise	Comments

							Property	O'Connell											Data Point
22/03/2019 4:15	22/03/2019 21:55	2/04/2019 12:17	24/08/2018 14:36	2/04/2019 23:21	3/07/2018 14:36	18/06/2018 23:22	18/06/2018 14:27	18/04/2018 11:36	13/04/2018 15:34	8/02/2018 11:47	19/01/2018 15:37	24/10/2017 16:10	19/09/2017 23:52	19/09/2017 15:30	17/08/2017 15:42	17/07/2017 23:05	17/05/2017 12:03	12/05/2017 12:50	Time
			40.9		29.7	37.5	29.9	38.1	49.8	40.3	40.3	38.7	30.4	42.9	38	29.3	37.2	39	LAeq
39.5	86.3	0	63.8	58.7	55.8	57	50.7	65	75.2	49.1	70.8	62.9	43.3	53.3	55.1	50.7	56.1	55.3	Lmax(dB)
22.5	61.5	0		32.5							42		32	45.5	42	31.5	39.5	41.5	L10(dB)
21.1	36.4	0		25.5							35		27	38	27	23	31.5	34.5	(BP)56T
21.1	22.2	0		28.5							38.5		29.5	42	33 33	25	35.5	38	L50(dB)
Still, No rain or wind	Still, No Visbility	SE, 2m/s, Slight Fog	99% cloud SW 3 m/s	0% Wind 0% Wind speed	0% cloud 0 wind	50% cloud 0 wind	0% cloud 0 wind	100% cloud WNW 2 kph	30% cloud 0 wind	0% cloud	NE wind, 4 m/s, 30 % Cloud	80% cloud	10% cloud N 1 km/h	90% cloud NE 5km/h	90% cloud S 3m/s	0% cloud 0 wind	40% cloud SW 4m/s	40% cloud wind 1 m/s	Weather Conditions
Very still, could hear trucks hauling in distance. Horses started being restless and making a little noise. Recorded by CBoyt	Still, a little noise from Ducks. This was on the other side of Parky's house. Recorded by CBoyt	Hot seat change over. 1 Frog 1 Sheep	used old meter	0% Cloud Conditions		Ag vehicle drove past		Wind in trees making noise	light traffic through township				paradise ducks making noise	Some road noise, some wind noise	minor tree noise. Vehicle drove past	Digger moving up Frasers Ramp	2 vehicles drove past. lots of noise from school		Comments

Data Point	Time	LAeq	Lmax(dB) L10(dB)		L95(dB) L50(dB)		Weather Conditions	Comments
	10/05/2017 15:47	45.4	71.5	45	35	39	calm, clear	mining noise audible, bird noise
	10/05/2017 15:20	45.8	73.1	41	31.5	35.5	calm, clear warm wind	paused for vehicle, vehicle went
							1m/s	past, mining noise audible
	12/05/2017 12:22	37.2	56.1	39.5	31.5	35.5	40% cloud, SW 4m/s	Vehicle drove past, wind noise
								from trees, Voices from school
	25/07/2017 11:23	42.9	62.9	45	29	37	15% cloud NW 4m/s	Some noise from trees
School	17/08/2017 15:27	37.7	54.7	42	28.5	33	5% cloud W 3m/s	Some tree noise
House	19/09/2017 15:50	42.1	49.7	45	37	41	NE 5 km/h	some road noise
	31/01/2018 11:28	63.5	71.6				5% cloud	Lots of wind noise through trees
	8/02/2018 12:05	8.4	57.1				0% cloud no wind	school children at school making
								noise
	22/03/2019 10:30		44.4	23.5	22.5	22.5	Cool, Nil wind or rain,	Still and very quiet. Couple of
							(camper in the background.

Appendix V Noise Monitoring Reports

\(\) +64 3 377 8952

\(\otimes\) www.aeservices.co.nz

\(\otimes\) office@aeservices.co.nz

\(\otimes\) PO Box 549, Christchurch 8140

Level 2, 518 Colombo Street, Christchurch 8011

File Ref: AC18364 - 02 - R2

5 March 2019

Mr G. Lee OceanaGold Corporation Golden Point Road RD3 Macraes Flat 9483 EAST OTAGO

Email: Gavin.Lee@oceanagold.com

Dear Gavin,

Re: Oceana Gold Corporation, Macraes Flat, Otago Response to MDA peer review queries

Acoustic Engineering Services (AES) have been asked to provide additional information regarding the expected noise levels at the Howard dwelling as a result of the activity on the Macraes Flat gold mine.

We understand that the mining activity on the site currently is at the Coronation North pit, on the opposite side of the hill to the north of the Howard dwelling, and the associated haul road connecting the pit to the processing plant.

1.0 CURRENT NOISE LEVELS (A-WEIGHTED AND SPECTRAL) AT THE NOTIONAL BOUNDARY OF THE HOWARD'S PROPERTY, EITHER MEASURED OR PREDICTED UNDER LIGHT DOWNWIND CONDITIONS IN ACCORDANCE WITH NZS6801/6802/IS09613-2

A long-term noise monitoring station has been installed approximately 20 metres from the Howard dwelling. The data from this unit has been analysed for the night-time period (2100 to 0700 hours) for a selected sixweek period in August and September 2018, after a bund was installed along the haul road. As this six-week period occurred during the colder months of the year, we expect it to be representative (or over-representative) of the relevant weather conditions in the area which enhance the propagation of sound. We understand that it is during the night-time period that the noise from the mine is more disturbing to the Howards. It is also the period when the surrounding ambient noise is generally low and the noise from the mine is able to be isolated.

Measurements were disregarded from the analysis when the wind speed at the local weather monitoring station was recorded above 5 m/s, as well as when the audio files confirmed that the dominant noise source was obviously not from the mine (such as wind noise in trees).

Based on this analysis, the following noise levels have been recorded at the Howard dwelling:

Noise from the Coronation North mine

- Under typical weather conditions and mining activity (with no hauling) noise levels during the night-time period are in the range of 25 35 dB L_{Aeq (15 mins)}.
- On some infrequent occasions the noise levels increased to a maximum of 42 dB L_{Aeq (15 mins)} due to unusual meteorological conditions, and equipment undertaking non-typical activity on the mining site

or the haul road (for example a bulldozer travelling along the haul road). Unusual meteorological conditions may sometimes still be within the meteorological window outlined in NZS6802:2008, but occur very infrequently. These periods may not therefore be necessarily considered 'representative' as per section A1.3 of NZS6802:2008

Noise from the Haul Road

- Noise from a single haul truck on the haul road under neutral conditions measured 37 dB L_{Aeq (15 mins)} at the Howard dwelling. This may be increased (by 1 3 dB) if it happened to occur at a time of enhanced propagation which still fell within the 'meteorological window' outlined in NZS 6802:2008.
- We understand that up to eight trucks may use the haul road during a single 15-minute period during the night-time. Therefore, considering enhanced propagation (+ 3 dB) noise levels of up to 49 dB L_{Aeq} (15 mins) may be received at the Howard dwelling if this was to occur.

We note that the sound insulation analysis outlined in our report titled *Oceana Gold Corporation, Macraes Flat, Otago: Proposed upgrades to Howard dwelling* (AES file reference: AC18364 – 01 – R2, dated the 19^{th} of November 2019), was based on the C_{tr} adaption term outlined in ISO 717.1:2000 *Acoustics – Rating of sound insulation in buildings and of building elements Part 1: Airborne sound insulation*, rather than a specific measured noise spectrum.

Attended noise monitoring was undertaken in the proximity of the Howard dwelling as the haul trucks travelled along the haul road, and in close proximity to the haul trucks. The close proximity measurements of the trucks were used to determine the overall sound power of the trucks. SoundPlan computational noise modelling software, based on ISO 9613 Acoustics – Attenuation of sound outdoors – Part 2: General method of calculation has been used to calculate the propagation of noise from the trucks, taking into account the topography of the area, and the sound power level of the trucks.

Based on a 49 dB L_{Aeq} overall noise level at the notional boundary of the Howard dwelling, the possible frequency content of the noise suggested by each method is as follows:

	Frequency	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
	Ctr	-	35	39	42	45	43	38
	Measured at Howard dwelling	25	37	37	46	43	37	21
dBA	Predicted at Howard dwelling based on close proximity measurements	27	35	28	45	45	38	4

2.0 CURRENT CONSENT CONDITIONS APPLYING TO NOISE AT THE HOWARD DWELLING

We understand that the current noise related conditions of consent are as follows:

- 1. The consent holder shall ensure that all construction and operation activities associated with the mining operation are designed and conducted so that the following noise limits are not exceeded at the locations specified in Condition 8.2
 - (a) On any day between 7am and 9pm (daytime): 50 dB LAeq; and
 - (b) On any day between 9pm and 7am the following day (night-time): 40 dB L_{Aeq}; and/or 70 dB L_{Amax}

Measurement Locations

2. Noise measurements shall be taken at any point within Macraes Village; or at, the notional boundary of any dwelling not owned by the consent holder in the Rural Scenic Zone.

Note: The notional boundary is defined as a line 20 metres from the exterior wall of any rural dwelling or the legal boundary where this is closer to the dwelling.

Measurement and Assessment

- 3. All noise measurements referred to in Conditions 8.1 and 8.2 above shall be measured in accordance with the provisions of NZS 6801:2008 Acoustics: Measurement of Environmental Sound, and shall be assessed in accordance with the provisions of NZS 6802:2008 Acoustics: Environmental Noise.
- 4. Prior to the commencement of mining, the consent holder shall install double glazing at 406 Horse Flat Road owned by C A and E M Howard. The glazing shall include one layer of 6 mm laminated glass for noise reduction purposes. A mechanical ventilation system shall also be installed in the dwelling that will supply supplementary fresh air ducted from outside to bedrooms and living spaces.

3.0 MITIGATION STRATEGY THAT OCEANIA IS OR COULD CONSIDER TO REDUCE THE NOISE LEVELS TO A COMPLIANT LEVEL

As stated in section 1.0, the dominant noise received at the Howard dwelling is due to the use of the haul road. In order to reduce noise levels from this source, we understand that OceanaGold have completed the following:

- Installed 4-metre-high bunds along portions of the haul road identified by AES between the Coronation North pit and the Howard dwelling. Based on the unattended monitoring this has reduced the noise levels at the Howard dwelling by more than 5 dB.
- Implemented a no hauling at night policy until an agreement with can be reached with the Howards.
- Upgraded the glazing and installed a mechanical ventilation system at the Howard dwelling, as required by the Condition of Consent.
- Installed the long-term monitoring station at the Howard dwelling to provide greater understanding of the current noise levels experienced.

As outlined in our report titled Oceana Gold Corporation, Macraes Flat, Otago: Proposed upgrades to Howard dwelling (AES file reference: AC18364 – 01 – R2, dated the 19th of November 2019), Oceana Gold have also offered to undertake further upgrades of the Howard dwelling.

Further to the above, we understand that the following is also being investigated with regard to practicality and effectiveness:

- Increasing the height and / or extent of the bund further, as there is still currently line of sight between the trucks and the Howard dwelling in some locations. We understand that this is currently being investigated in regard to wind and slope stability.
- Limitations on the number of truck movements in a 15-minute period.
- Additional close proximity screening for the Howard dwelling.

4.0 PREDICTED NOISE CONTOURS ACROSS THE HOWARD'S PROPERTY FOR FUTURE STAGES OF ALREADY CONSENTED OR POSSIBLE FUTURE UN-CONSENTED PROJECTS (A-WEIGHTED AND SPECTRAL DATA)

As discussed above, the main noise received at the Howard dwelling is from the haul trucks on the haul road. SoundPlan computational noise modelling software, based on ISO 9613 Acoustics – Attenuation of sound outdoors – Part 2: General method of calculation has been used to calculate the propagation of noise from the trucks, taking into account the topography of the area, and the sound power level of the trucks.

We note that we have modelled the haul trucks as a line source on the haul road, calibrated to the worst-case expected 15-minute noise level at the Howard dwelling. The associated contour for one truck on the haul road is shown in figure 4.1 below, with the worst-case eight trucks in a 15-minute period shown in figure 4.2.

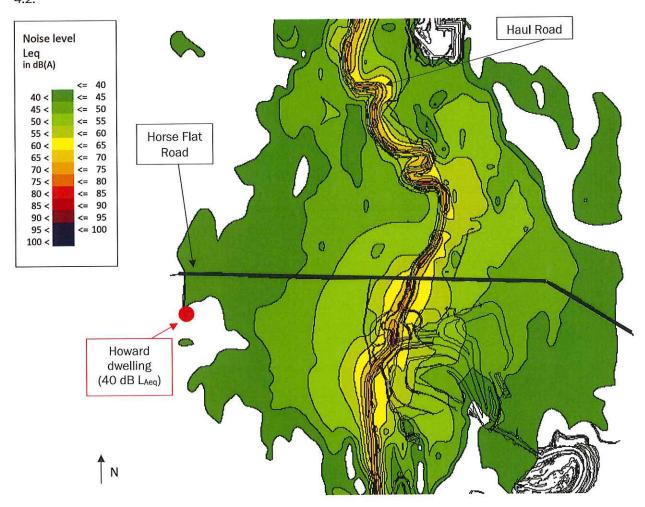


Figure 4.1 - Noise contour from one truck in a 15-minute period on the haul road

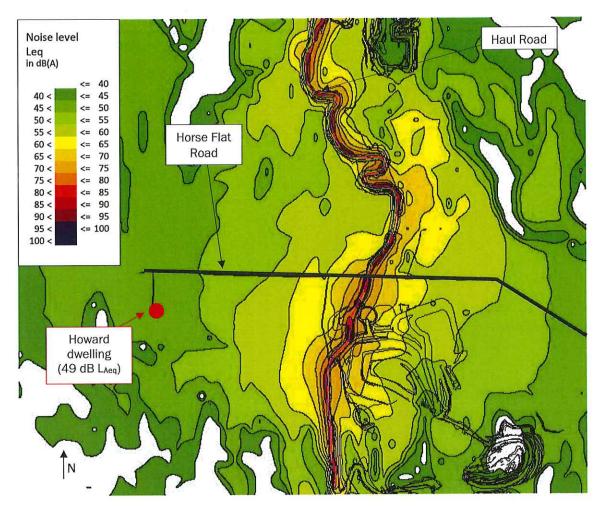


Figure 4.2 - Noise contour from eight trucks in 15-minute period on the haul road

Please do not hesitate to contact us to discuss further as required.

Kind regards

Clare Dykes MBSc, MASNZ

Senior Acoustic Engineer

Acoustic Engineering Services Ltd

Appendix VI Coronation North Extension Noise Modelling

\(\) +64 3 377 8952

\(\otimes\) www.aeservices.co.nz

\(\otimes\) office@aeservices.co.nz

\(\otimes\) PO Box 549, Christchurch 8140

Level 2, 518 Colombo Street, Christchurch 8011

File Ref: AC19058 - 01 - R2

21 March 2019

Mr G. Lee OceanaGold Corporation RD3, Macraes Flat 9483 East Otago

Email: Gavin.Lee@oceanagold.com

Dear Gavin,

Re: OceanaGold Coronation North mine, Macraes Flat, Otago Current noise emissions

Acoustic Engineering Services (AES) have been engaged to model the noise emissions from the current Coronation North mining activity at the OceanaGold Macraes Flat gold mine.

AES have undertaken previous noise measurements at a neighbouring dwelling in order to determine the noise levels from the Coronation Noise mine. An unattended monitoring station has also been set-up at the site. The levels recorded for a six-week period were analysed and the results outlined in a report titled Oceana Gold Mining activity, Macraes Flat – Review of unattended noise monitoring data (AES file reference: AC17347 – 12 – R2) and dated the 21st of November 2018.

1.0 SITE AND SURROUNDING ENVIRONMENT

The site is located within both the Dunedin City District and the Waitaki District. It is within the Macraes Mineral Mining Zone and Rural Scenic Zone as defined in the Waitaki District Plan, and the Rural High Country Zone as defined in the Dunedin City Plan.

We understand that the activity occurs in two main pit areas, with the haul road connecting the pits to the processing plant. These areas are shown in figure 1.1 below.

There are a number of residential neighbours in relatively close proximity to the site. These are as follows:

- O'Neill 540 Four Mile Road (Dunedin City District, Rural High Country Zone)
- Peddie 482 Longdale Road (Dunedin City District, Rural High Country Zone) owned by OceanaGold
- Howard Horse Flat Road (Waitaki District, Rural General Zone)

The unattended monitoring discussed above was undertaken at the Howard dwelling.

Figure 1.1 - Site and surrounding area

2.0 CONDITIONS OF CONSENT

Through the previous Resource Consent process, several conditions of consent were approved, which included noise limits for the site. The noise related conditions of consent are as follows:

- 1. The consent holder shall ensure that all construction and operation activities associated with the mining operation are designed and conducted so that the following noise limits are not exceeded at the locations specified in Condition 8.2
 - (a) On any day between 7am and 9pm (daytime): 50 dB LAEQ; and
 - (b) On any day between 9pm and 7am the following day (night-time): 40 dB L_{Aeq} ; and/or 70 dB L_{Amax}

Measurement Locations

2. Noise measurements shall be taken at the notional boundary of any dwelling not owned by the consent holder.

Note: The notional boundary is defined as a line 20 metres from the exterior wall of any rural dwelling or the legal boundary where this is closer to the dwelling.

Measurement and Assessment

3. All noise measurements referred to in Conditions 8.1 and 8.2 above shall be measured in accordance with the provisions of NZS 6801:2008 Acoustics: Measurement of Environmental Sound, and shall be assessed in accordance with the provisions of NZS 6802:2008 Acoustics: Environmental Noise.

3.0 NOISE FROM MINING OPERATION

SoundPlan computational noise modelling based on ISO 9613 Acoustics – Attenuation of sound outdoors – Part 2: General method of calculation has been used to calculate the propagation of noise from the site, taking into account the topography of the area, and sound power levels for each of the noise sources.

This modelling considers enhanced propagation representative of either moderate downwind conditions (up to 5 m/s) in every direction (which would not occur in reality), or moderate ground-based temperature inversions to represent what can occur on a clear, calm night. Noise levels predicted under these conditions are taken as being at the upper limit of the 'meteorological window' described in NZS 6801:2008 and NZS 6802:2008 where valid compliance assessments are possible.

3.1 Sound power of equipment

Clare Dykes of AES conducted a series of noise measurements on mining plant, equipment and heavy machinery operating at the existing Coronation North Pit, between 1300 and 1600 hours on the 8th of February 2018. Measurements were made in general accordance with NZS 6801:2008 Acoustics – Measurement of environmental sound.

The purpose of these measurements was to acquire data which could be used for predicting the expected noise levels at the notional boundaries of the neighbouring residential properties, for a given worst-case scenario in each of the mining areas.

In addition, as discussed above attended and unattended noise monitoring has been carried out at the Howard's dwelling to determine the noise levels associated with trucks using the Haul Road.

3.1.1 Main quarrying equipment

We note that it was not possible to obtain measurements of all the specific equipment on the site – as it was not operating at the time of the measurements. However, a representative sample of equipment was obtained and the measured noise levels are in line with the reference levels provided in the relevant standards. Based on these measurements and analysis, the assumed worst-case sound power levels of the noise generating equipment which is associated with the operation are shown in table 3.1 below. This data has been used to calculate the noise expected at the nearest neighbouring dwellings due to the machinery operating.

Equipment or Machinery	Sound level dB LwA	Notes
Drill	119	1.
Excavator	115	2.
Dozer / Loader	116	2.
Grader	115	2.
Water truck / Service truck	115	2.

Table 3.1 - Equipment sound power levels

1. Worst-case assumption based on measurements undertaken of larger exploration drill on site.

 Measured typical levels on site and referenced against the British Standard BS 5228-1:2009 Code of practice for noise and vibration control on construction and open sites – Part 1: Noise.

3.1.2 Trucks

The noise level emitted by the haul trucks is more difficult to determine as the noise output of the truck varies with load, terrain and operation.

Given the changing gradient of the haul road the trucks emit varying levels of noise as they travel up / down the road. To determine the relative noise source level of the trucks as they travel on the haul road, we have calibrated our model using the results from our unattended noise monitoring at the notional boundary of the Howard dwelling. Noise from a single haul truck on the haul road under neutral weather conditions measured 37 dB L_{Aeq} (15 mins) at the Howard dwelling. This may be increased (by 1-3 dB) if it happened to occur at a time during enhanced propagation which still fell within the meteorological window outlined in NZS 6802:2008.

We understand that up to eight trucks may use the haul road during a single 15-minute period. Therefore, considering enhanced propagation (+3 dB) noise levels of up to 49 dB LAeq (15 mins) may be received at the Howard dwelling if this was to occur.

We have therefore considered eight trucks as a line source along the haul road, scaled to achieve a noise level of 49 dB L_{Aeq} at the Howard dwelling.

3.2 Predicted noise levels

3.2.1 Daytime activity (0700 to 2100 hours)

Based on discussions with the Client, we have based our model on the following worst-case level of activity between 0700 and 2100 hours:

- Western Pit 2 excavators, 2 drills, 3 dozers, 1 grader, 1 service truck
- Eastern Pit 2 excavators, 2 drills, 3 dozers, 1 grader, 1 service truck, 1 loader
- 10 trucks travelling between the western pit and the western waste rock stack
- 10 trucks travelling between the eastern pit and the eastern waste rock stack
- Eight trucks travelling from both of the pits down the haul road to the processing plant

There is also one water truck, and one grader on the roads between the two pits, and a water truck at the closest point to the Howard's on the haul road.

The resultant predicted daytime noise levels are shown in figure 3.1 below.

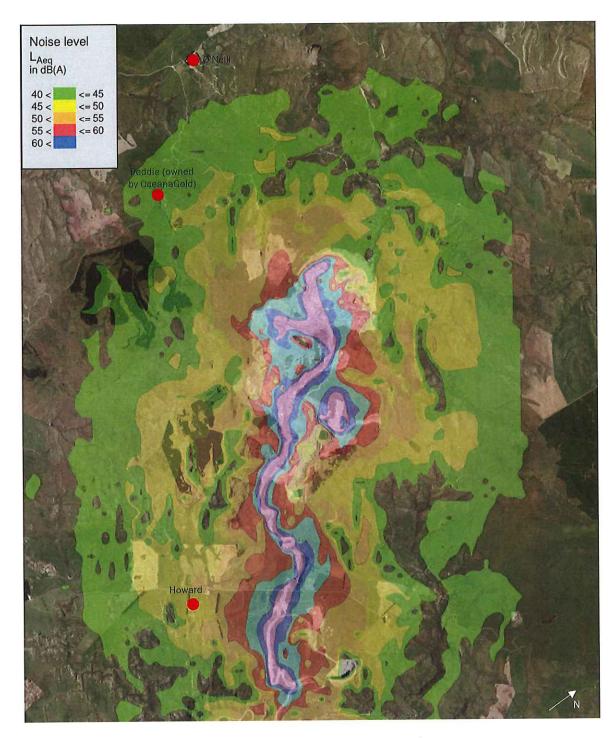


Figure 3.1 - Predicted daytime noise levels

Based on this modelling, the following noise levels are likely to currently be expected at the notional boundaries of the nearest neighbouring dwellings:

- O'Neill 36 dB L_{Aeq}
- Peddie 44 dB L_{Aeq}

Howard – 49 dB L_{Aeq}

3.2.2 Night-time activity (2100 to 0700 hours)

We understand that OceanaGold have currently implemented a no hauling at night policy until they can come to an agreement with the Howards. The remaining activity on the site will continue at the same level, including the trucks travelling between the pits and waste rock stacks. Therefore, we have considered a scenario with all of the equipment stated in section 3.2.1 above in the same locations, but without any haul trucks travelling from the pits to the processing plant. The resultant predicted noise levels without the trucks on the haul road during the night-time period are shown below in figure 3.2.

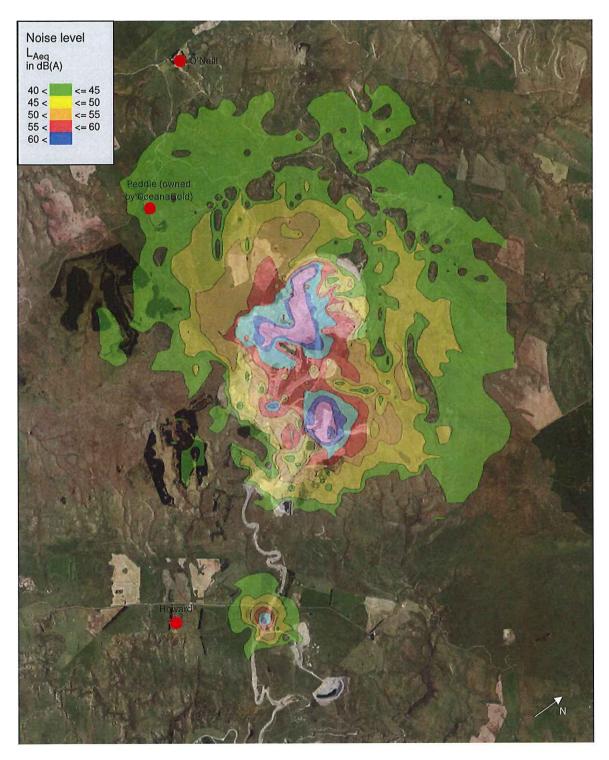


Figure 3.2 - Predicted night-time noise levels

Based on this modelling, the following noise levels are likely to be expected at the notional boundaries of the nearest neighbouring dwellings:

O'Neill – 32 dB L_{Aeq}

- Peddie 42 dB LAeq
- Howard 34 dB L_{Aeq}

Please do not hesitate to contact us to discuss further as required.

Kind Regards,

Clare Dykes MBSc, MASNZ Senior Acoustic Engineer Asourstis Engines S

Acoustic Engineering Services Ltd

RECORD OF TITLE **UNDER LAND TRANSFER ACT 2017 FREEHOLD**

Search Copy

Identifier

Land Registration District

OT15A/514 Otago 30 April 1993

Date Issued

Prior References OT13B/341

Estate

Fee Simple

Area

1277.5927 hectares more or less

Legal Description Part Section 2 Block V Highlay Survey

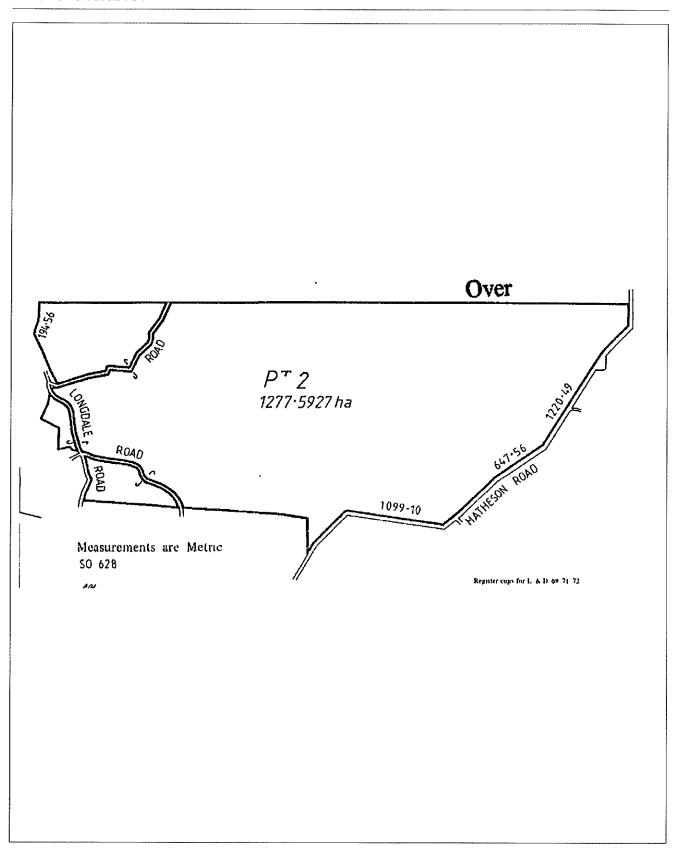
District

Registered Owners

Oceana Gold (New Zealand) Limited

Interests

Exploration Permit embodied in Register OT9D/575 - 14.2.1997 at 9.20 am


Mining Permit embodied in Register OT9D/637 - 16.9.1999 at 9.00 am

5100997.1 Exploration Permit to GRD Macraes Limited for 5 years commencing on 28.10.2001 CIR 63225 issued-31.10.2001 at 9:46 am

8637602.1 Notice of Access Rights pursuant to Section 83 Crown Minerals Act 1991 - 10.12.2010 at 10:59 am

10888562.1 Compensation Certificate pursuant to Section 19 Public Works Act 1981 by Dunedin City Council -29.8.2017 at 7:00 am

Transaction Id Client Reference jsule001 Search Copy Dated 15/04/19 1:48 pm, Page 1 of 2 Register Only

John Sule

From: Gavin Lee <Gavin.Lee@oceanagold.com>

Sent: Thursday, 18 April 2019 12:15 p.m.

To: Andrew Purves

Cc: John Sule; Michelle Gardiner **Subject:** RE: Coro Extension Maps part 1.

Attachments: Coronation North Extension Map 1_190418.jpg; S_92_map_1a.jpg; S92_Figure 1_

1b.jpg

Hi Andrew

In response to your email, we have updated the 5 maps which include:

- Creating a contiguous pit shell for the Consent documents.
- Improving font sizing on Map titled 'Coronation North Map 1'
- Including Area C as part of Map "S_92 figure 1b".
- Changing the titles of Map 1 to Figure 1 to reflect the fact that these are amended from maps associated with the Coronation North Consent.

With regards to Map "Figure 2" on roading, we have removed the Post Mining Matheson Rd alignment related to the original Coronation consent (2014). The alignment proposed in Coronation North Extension remains the alignment accepted as part of the Coronation North Project (2017). The only difference is that instead of the road dipping behind Area C of the Coronation North Waste Rock Stack (at an elevation of 655m ASL) the proposed road is now raised to 690m ASL on Trimbells Waste Rock Stack. The proposed alignment allows for a view to the north, whilst the currently accepted alignment, at the same location, would have the northern view obscured by Area C of the Waste Rock Stack.

In addition, based on further discussions with the geotechnical specialists we have modified the proposed consented footprint for the Pit Wall Stability Layback to avoid the Basalt Contact Seepage Wetland. Recent low gold grades in the area associated with the western wall of the Pit have been found to be uneconomic and as such we have moved mining away from this area, thus reducing the potential for instability of the Pit wall at this location. The area associated with the wetland has shown no signs of movement in the last seven months (even following the high rainfall in November) and hence we are confident that the area will continue to be stable until backfilling of the pit occurs at this location. The removal of the wetland results in a reduction in the proposed consented footprint of 6.5ha. This equates to an overall proposed footprint of 50.9ha, a net decrease of 1 ha when taking into account the area set aside in the Waste Rock Stack.

Do to the size of the maps, I will have to send this email in 2 parts.

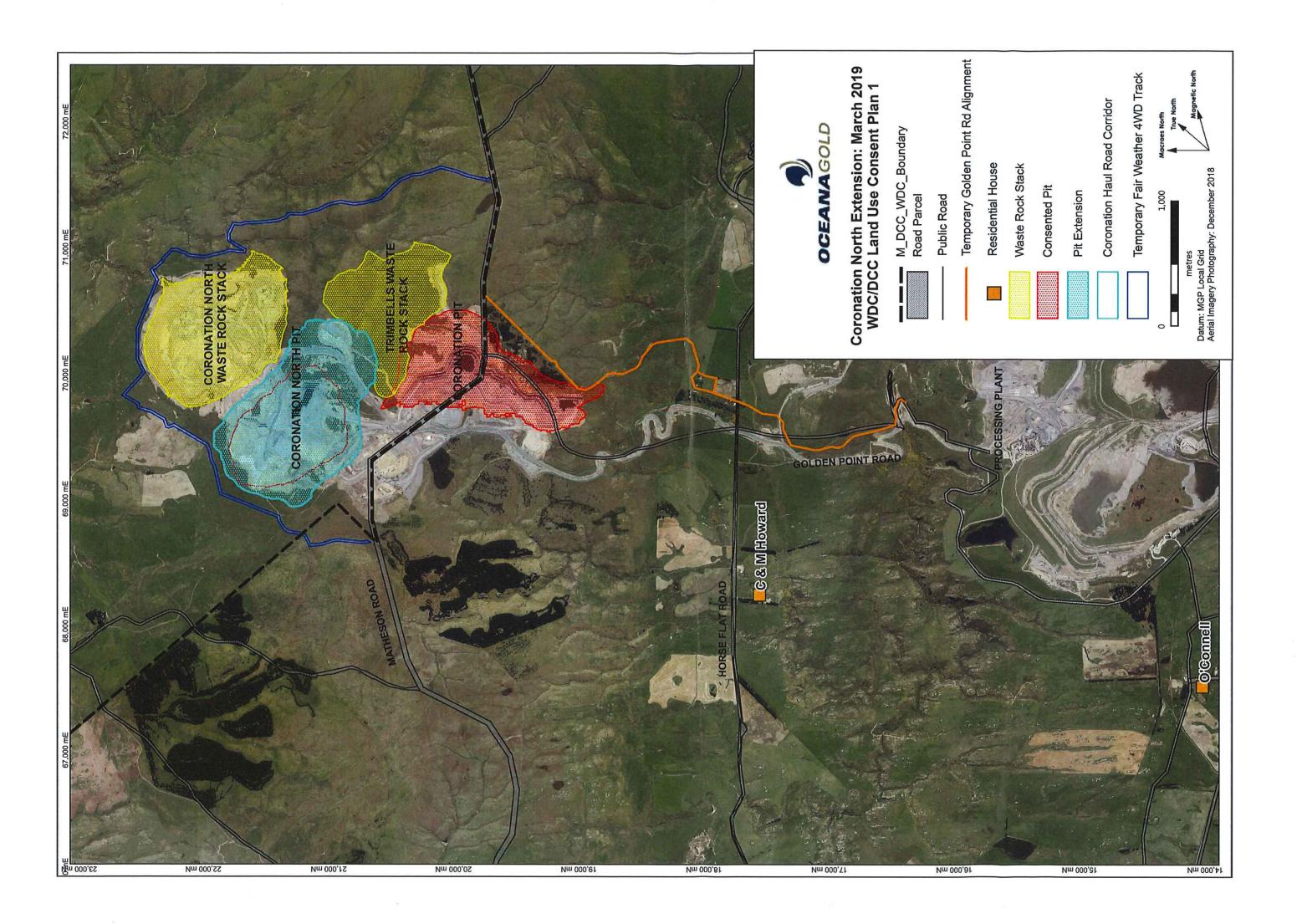
Please contact me should you have any further questions.

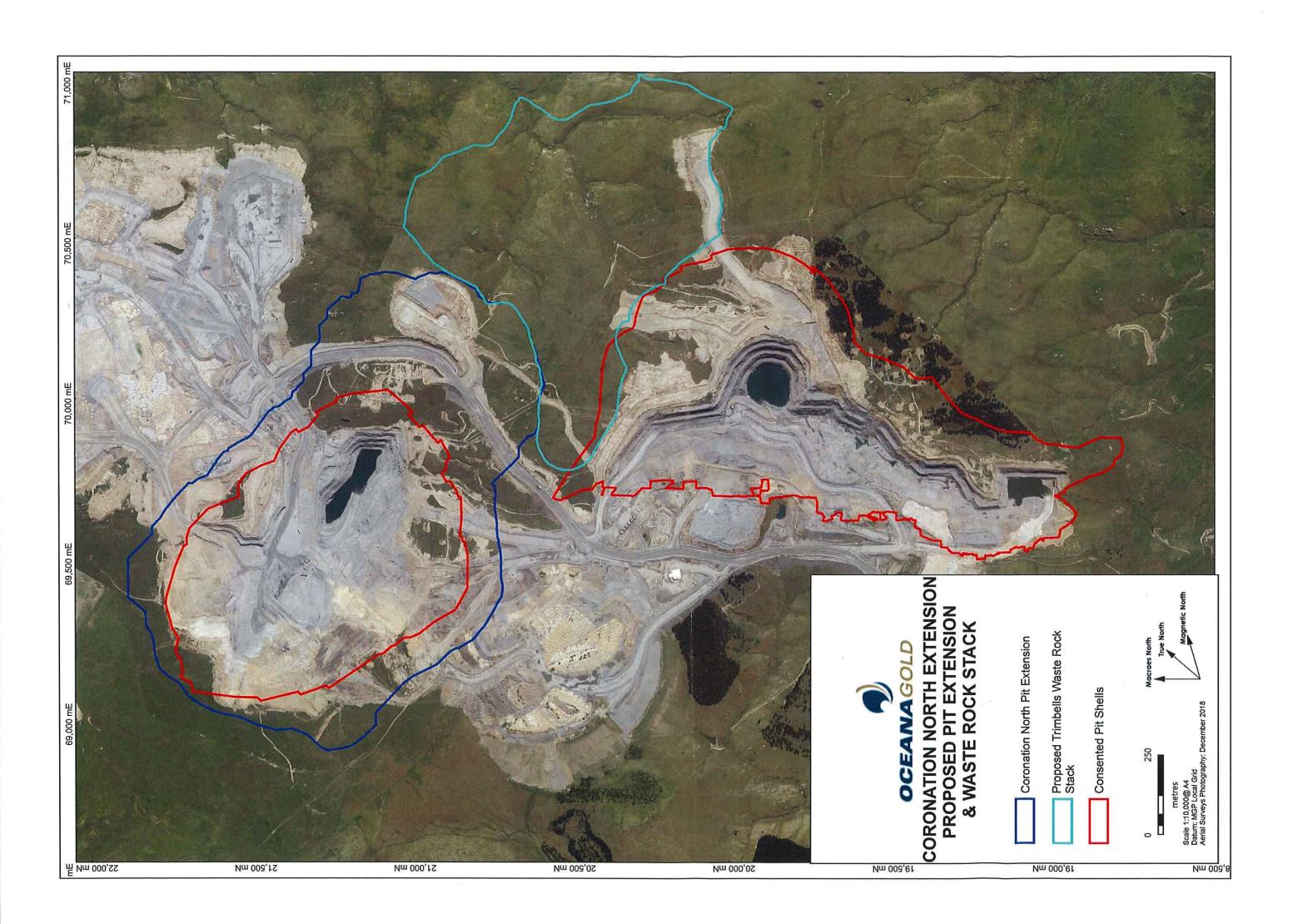
Regards Gavin

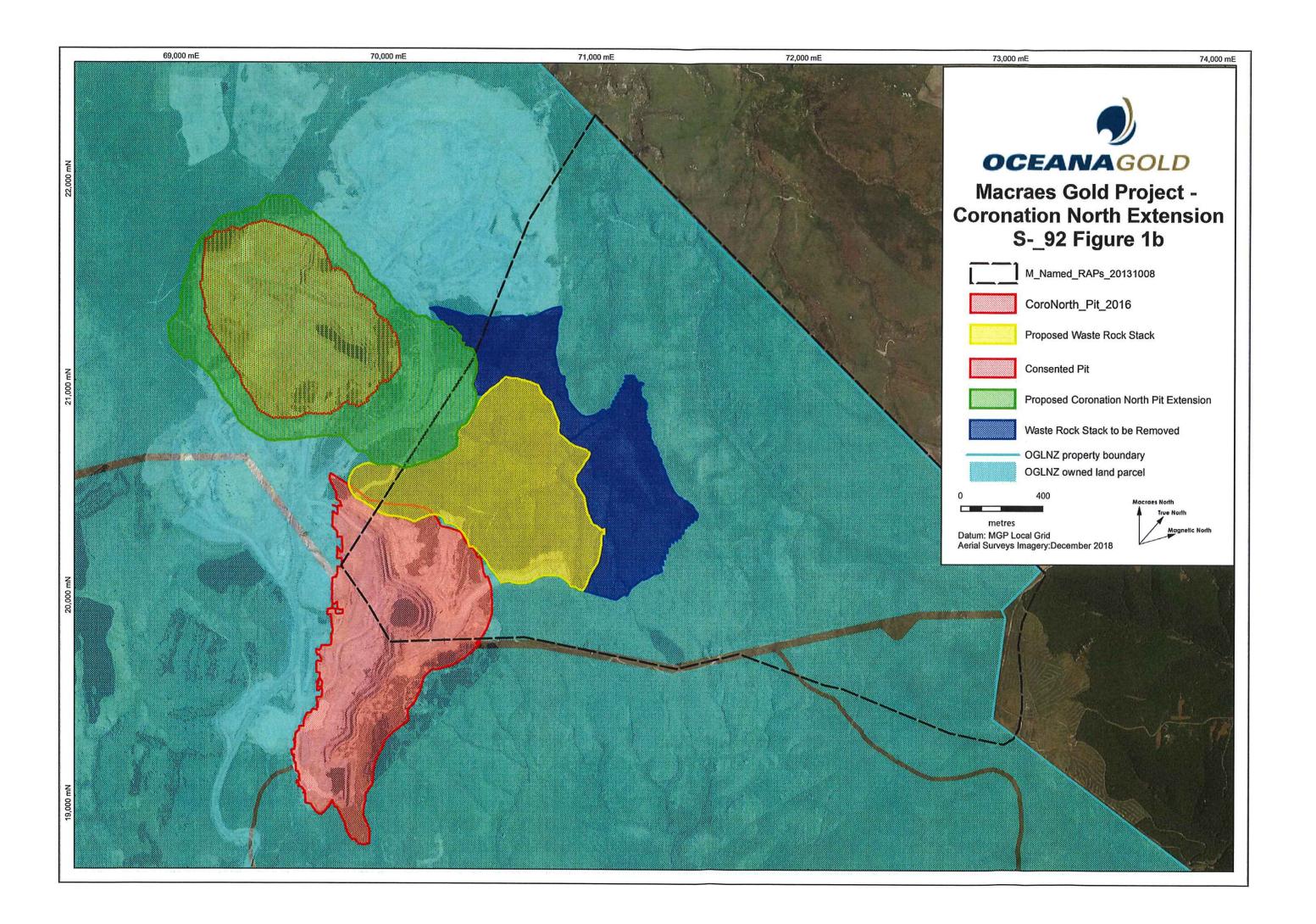
> Gavin Lee Environment and Community Manager

OUR VALUES: RESPECT | INTEGRITY | TEAMWORK | INNOVATION | ACTION | ACCOUNTABILITY

Andrew Purves Planning & Resource Management Ltd


PO Box 33010 Barrington 8244 Christchurch


22 Cashmere View St Christchurch 8204


Ph-03-960 7088 Mobile-021-297 9659

This message is confidential and may be legally privileged. If you are not the intended recipient you must not read or do anything else with this message. If you have received this message in error please tell us immediately by return email and then destroy this email. Thank you.

This email is intended only for the person to which it is addressed and may contain confidential or legally privileged material. Any dissemination or other use of or taking of any action in reliance upon the content of this email by persons other than the intended recipient is prohibited. If you received this in error, please contact the sender and delete the email from any computer. Opinions and other information in this email that do not relate to the business of my employer are not given nor endorsed by it. Unencrypted email is not secure and may not be authentic. If you have any doubts as to the contents please telephone to confirm. Oceana Gold Corporation and its related entities accept no responsibility for changes made to this email or its attachments after transmission from Oceana Gold Corporation and its related entities and do not guarantee that this email or attachments are virus or error free.

