

Oceana Gold (NZ) Ltd Macraes Gold Project

Ecological Impact of proposed Coal Creek
Water Storage Dam

April 2016

 $Oceana Gold-Coal\ Creek\ dam:\ Vegetation,\ Avifauna\ \&\ Herpeto fauna\ Ecological\ Impact\ Assessment-FINAL$

Page 2 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Report prepared for Oceana Gold (New Zealand) Ltd by Dr M. J. Thorsen,

27 April 2016

Report number: 0219-08

©ERA Ecology New Zealand Limited

159 Evans Street

Dunedin 9010

New Zealand

Reliance and Disclaimer

The professional analysis and advice in this report has been prepared by ERA Ecology NZ Ltd for the exclusive use of the party or parties to whom it is addressed (the addressee) and for the purposes specified in it. This report is supplied in good faith and reflects the knowledge, expertise and experience of the consultants involved. ERA Ecology NZ Ltd accepts no responsibility whatsoever for any loss occasioned by any person acting or refraining from action as a result of reliance on the report, other than the addressee.

In preparing this report ERA Ecology NZ Ltd has endeavoured to use what it considers as the best information available at the date of publication, including information supplied by the addressee. Unless stated otherwise, ERA Ecology NZ Ltd does not guarantee the accuracy of any forecast or prediction in this report.

ERA Ecology NZ Ltd guarantees its work as free of political bias and as grounded in sound ecological principles based on quality knowledge.

Page 3 of 125 **ERA Ecology NZ Ltd**

Contents

1

2	Exe	cutive Summary	5
3	Qua	lity Assurance	5
4	Proj	ect Overview	7
	4.1	The Coal Creek Water Storage Dam Project	7
	4.2	Land Tenure	7
	4.3	Regulatory Authorities	7
	4.4	OceanaGold Environmental Standards	7
	4.5	Assessment Methodology	10
	4.6	Assessing Ecological Importance	12
	4.7	Assessing Project Impact	12
5	Asse	essment of Ecological Importance	16
	5.1	General Ecological Setting	16
	5.2	Flora Ecological Features	17
	5.3	Threatened, At Risk, or rare plant species	22
	5.4	Avifauna Ecological Features	63
	5.5	Herpetofauna Ecological Features	66
	5.6	Summary Table of Ecological Features	70
6	Proj	ect Impact on Biodiversity Features	71
	6.1	Impact on Vegetation Communities	71
	6.2	Threatened, At Risk, or Rare Plant Species	72
	6.3	Impact on Avifauna Ecological Features	102
	6.4	Impact on Herpetofauna Ecological Features	104
	6.5	Summary of Project Impacts	106
7	Ecol	logical features in surrounding area	107
8	Refe	erences	108
9	Арр	endices	110
	Appen	dix 1. Biodiversity recorded during Coal Creek dam site and Coronation North inventories	111
Appendix 2. Abbreviations used in text			125

2 Executive Summary

This document summarises the current knowledge of the vegetation, avifauna and herpetofauna of the Coal Creek project area based on previous studies, databases and site inventory surveys and evaluates the potential impact of the proposed project on the relevant ecological features. There are 5 vegetation communities within the project harbouring 2 Threatened, 6 At Risk, 1 Data Deficient and 4 rare species and two morphologically distinct forms. This is mainly due to the large schist bluff systems in the project area. Bird and herpetofauna communities are relatively depauperate (for the area), with few species at low (bird) or moderate (reptile) population densities. One At Risk bird species and 2 At Risk reptile species are present within, or are likely to occasionally utilise, the project. Most of the higher value ecological features are concentrated on the larger bluff systems. A summary of the ecological features of the project area is provided in Section 5.6.

The project will have a large impact on these features, which will result in the loss of all ecological features within the project boundary. Impact on ecological features in the area surrounding the project is expected to be minor and mainly concentrated within 100m of the project edge. The scale of impact on the area's ecological features varies, depending on the feature under consideration, from low to very high at the local scale, very low to high at a national scale, and overall from negligible to very high (for some vegetation communities and Threatened plant species). A summary of the project's impact on the ecological features is provided in Section 6.5. Several notable ecological features are present in the area surrounding this project, and it is recommended to avoid these sites during planning project activities, particularly when identifying the site access route and borrow site.

Mitigation of project impact on ecological features is yet to be assessed.

3 Quality Assurance

The practices and methods set out in this Ecological Impact Assessment are those considered appropriate for delivering accurate information, and would withstand scrutiny from a majority of competent ecologists.

No survey can guarantee to detect every species present in an area, and non-detection is likely to be more of a factor in cryptic or rare species, or species with no flowering material at the time of survey. All reasonable effort was made in the detection of these species during survey. There is also an element of uncertainty in the distribution of some species that are difficult to identify, or smaller herbs and grasses as these are frequently overlooked during informal surveys. There is approximately 20% of the flora that lacks a formal name and there is limited information available both on how to identify these entities and where they are found. Much of bluffs at this site are not accessible without an abseil safety system and because of this have not been surveyed.

Due to the limited period of survey the results in this document will not reflect: 1) seasonal variation in abundance or site usage by some species, or 2) inter-annual variation in abundance or site usage by any species.

Page 5 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

The identity and boundary of vegetation communities have been determined from interpretation of aerial photographs together with ground-truthing and oblique photography. The map may not accurately represent the correct vegetation community or current border of some vegetation communities, particularly those with a dispersed character or where bordered by similar communities. Smaller occurrences (<1 ha) of some vegetation communities are generally not represented in this document's reports and maps.

This document uses information drawn from previous reports by other organisations and no guarantee can be made on the quality, comprehensiveness or accuracy of that information.

Page 6 of 125 ERA Ecology NZ Ltd

4 Project Overview

4.1 The Coal Creek Water Storage Dam Project

A new freshwater storage dam will be constructed in Coal Creek. OceanaGold plan to build an earth embankment in Coal Creek up to 25m high. It will hold up to 670 million litres at maximum capacity, when it will cover an estimated 1.36ha, and release a residual flow of 5L/s. The purpose of the dam is to maintain a permanent residual flow in the Mare Burn during dry and low flow periods.

4.2 Land Tenure

This project is entirely on Oceana Gold (New Zealand) Limited freehold land.

4.3 Regulatory Authorities

This project is situated within the Dunedin City Council (DCC) territorial boundary. The entire area is located within the Otago Regional Council and Department of Conservation's Kā Moana Haehae/Alexandra Office territorial boundaries.

4.4 OceanaGold Environmental Standards

OceanaGold's environmental management programme is based on the complete mine life cycle, from exploration through development and operation, to eventual decommissioning, closure and site rehabilitation. The company seeks to not only meet, but consistently exceed regulatory requirements in place, to protect the environment for future generations and safeguard the sustainability of nearby communities.

OceanaGold is committed to continued improvement in the identification, assessment, mitigation, and monitoring of the environmental effects of its operations. The company works hard to plan and implement environmental projects that protect and support the natural environments associated with its operations, and that demonstrate its focus on international best practice environmental stewardship. Clearly, the company's activities can impact the environment and in some cases, create lasting effects. Wherever possible, OceanaGold seeks to ensure a net environmental gain from its activities, and is diligent in its adherence to all applicable laws and standards in New Zealand and offshore.

The Company aims to be an industry leader in the identification, assessment, mitigation and monitoring of its environmental impacts. Specifically, OceanaGold has an environment policy whereby it commits to:

Page 7 of 125 ERA Ecology NZ Ltd

- Identify and mitigate all environmental and human health impacts associated with its activities. In undertaking mitigation measures, the company will aim for a net environmental gain.
- Comply with all applicable laws and standards, and apply company-wide standards, based on international best practice, that minimise adverse environmental impacts arising from its operations.
- Rehabilitate all mine sites to a stable landscape and land use which does not pose any unacceptable risk to the environment.
- Develop an end-of-mine-life land use, in consultation with stakeholders, which will leave a positive legacy.

The aim of this policy is to provide direction to OceanaGold's employees, and contractors undertaking activities on the Company's behalf. The policy aims to place OceanaGold at the forefront of environmental impact identification and mitigation within the mining industry.

The purpose of ecological work at OceanaGold's Macraes mine site is to:

- 1. Ensure monitoring, management and reporting of flora, fauna and habitat meets relevant legislation, permits or licenses and community consultation outcomes.
- 2. Pursue a practice of minimum disturbance for the flora, fauna and habitat in the areas the site operates.
- 3. Ensure that the conservation status of flora and fauna species is not threatened.

These works will be undertaken to at least the company's Minimum Standard where:

- Sites will develop an Environmental Impact Assessment or Management Plan which will address management of land, flora, fauna and habitat, taking into account relevant legislation, permits or licenses, and community consultation.
- The Environmental Impact Assessment is to be updated where there are changes to any part of the operation (either man-made or natural) that significantly impact on it.
- The minimum area of vegetation required for exploration, construction and operation will be cleared.
- Where practicable, topsoil to a depth of 15 cm will be stockpiled prior, for use in rehabilitation.
- Sites will develop a programme to monitor and evaluate the health of flora and fauna affected by the location, and take steps to mitigate any adverse effects revealed.
- The monitoring programme will include weed and pest species, and appropriate management practices will be used to mitigate adverse effects.
- All employees are prohibited from capturing, purchasing or acquiring native wildlife for any purpose.

Page 8 of 125 ERA Ecology NZ Ltd

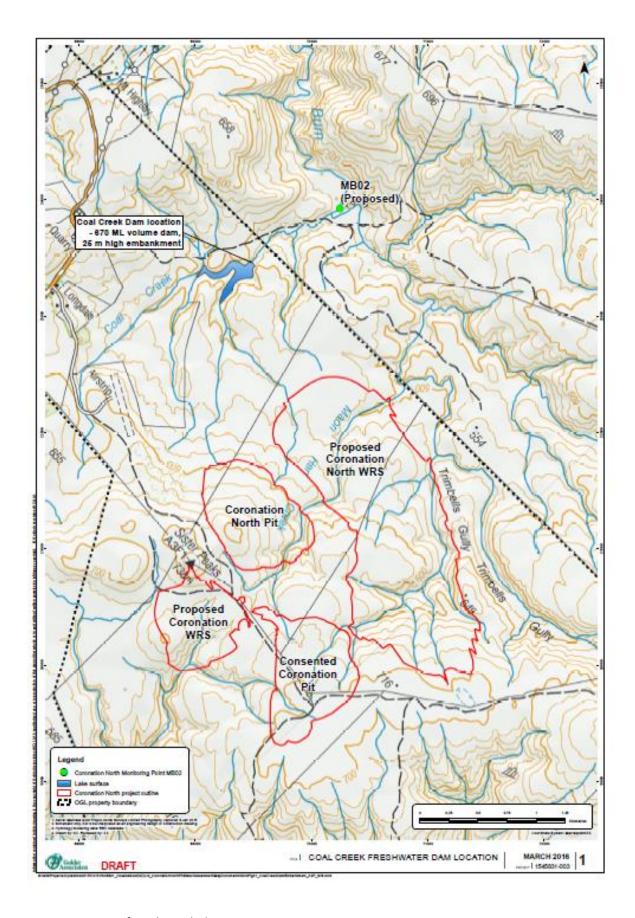


Figure 1. Location of Coal Creek dam project area.

Page 9 of 125 ERA Ecology NZ Ltd

4.5 Assessment Methodology

4.5.1 Literature review

All available literature on the natural history of the Macraes area was reviewed as part of the assessment process. Unpublished databases were also utilised: plant location records maintained by the New Zealand Plant Conservation Network (www.nzpcn.org.nz), Nature Watch (www.naturewatch.org.nz) and the author's unpublished database of plants observed in the Macraes area; reptile location records maintained by the Department of Conservation (DOC) in their Amphibian and Reptile Distribution Scheme (ARDS), and bird location records maintained by eBird (www.ebird.org) and Nature Watch.

4.5.2 On-site inventory survey methodology

The flora, reptiles and birdlife of the Project Impact Area (PIA, see <u>Section 4.7.2</u>) was assessed using expert walk-through surveys (Figure 2), these being better at finding rare features compared to plot-based assessments.

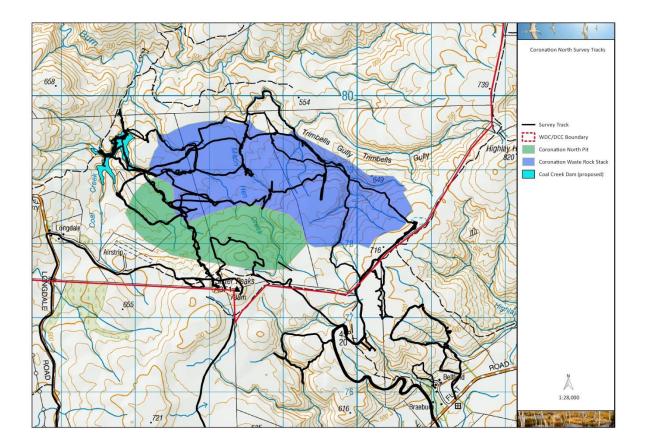


Figure 2. Paths taken by survey teams in the Coronation North area.

Page 10 of 125 ERA Ecology NZ Ltd

4.5.2.1 Flora survey

The flora survey of the Coronation North area was undertaken by Dr Mike Thorsen on 16 December 2015, 7, 14, 21 January and 1 April 2016. The PIA was specifically surveyed on 1 April 2016. During the flora survey all plant species (indigenous and exotic) were recorded during a walk-through survey of the PIA, where the path traversed what were considered to be the most botanically interesting areas, and an estimate of their abundance within the PIA was made using the following criteria: Previously Present (recorded by previous visitors, but not recorded during this survey); Rare (infrequently seen during survey and in very low numbers covering <1% of area); Local (only seen at few areas during survey, but could be quite common within these areas and covering <5% of total area); Occasional (individuals were scattered throughout site or were in widely scattered clumps and covering 5-20% of area); Common (frequently encountered during survey, but not a dominant part of the flora and covering 20-60% of area); Abundant (a dominant part of the flora and covering >60% of area). The locations of plant species or vegetation communities of interest were recorded using a hand-held GPS unit. Photographs of general vegetation patterns and sites of interest were taken. The results of this flora survey are provided in Section 5.2.

4.5.2.2 Avifauna survey

Bird species diversity and abundance is low in the Macraes area, and this makes more intensive survey efforts such as distance-sampling or 5-minute bird counts of limited utility. For the survey of the PIA, a record was made of all birds seen or heard during the walkthrough flora surveys, and the locations of species of interest were recorded using a hand-held GPS unit. The results of this survey are provided in Section 5.4.

4.5.2.1 Herpetofauna survey

The PIA area has previously been surveyed on 27 November 2014 (12 person daytime hours) (EcoGecko 2015) and was specifically surveyed by Mike Thorsen using spotlight-mounted binoculars for nocturnal lizard activity on 6 April 2016 (2 person night-time hours). During the survey, a path was followed that traversed areas considered the most likely to harbour reptiles or amphibians. At likely sites (and over the space travelled between sites) the area was scanned for visible animals, crevices were inspected (using a torch) for signs of animals or shed skins, and potential retreats (rocks and overhanging vines) were physically searched. The surveys were conducted during reasonably warm weather. All species seen were identified to species when possible (some sightings were too brief to allow a positive identification of species). A record of the time spent searching and the number of animals was recorded for calculating Sightings Per Unit Effort (SPUE). All locations were recorded onto ARDS cards and submitted to DOC. The herpetofauna survey of the adjacent Coronation North area was undertaken by Tony Jewell on 7 & 8 January 2016, with additional observations provided by Dr Mike Thorsen (see flora survey). The results of this herpetofauna survey are provided in Section 5.5.

Page 11 of 125 ERA Ecology NZ Ltd

4.6 Assessing Ecological Importance

The information that was gathered during the inventory surveys was used to evaluate the ecological importance of the vegetation, birds and reptiles and their habitats, against the following criteria (based on those recommended in the Environment Institute of Australia and New Zealand's 2015 Ecological Impact Assessment Guidelines available at http://www.eianz.org/resources/publications):

- Representativeness of communities.
- Distinctiveness of communities.
- Ecological functionality of communities (intactness, connectivity, buffering).
- Rarity of communities.
- Community diversity.
- Role in ecosystem servicing.
- Sites or communities of significance at
 - National (Threatened Land Environments, National Priorities for Conservation, Historically Rare or Threatened Ecosystems, Wetlands of National Importance, Ramsar Sites).
 - o Regional (as identified in the Regional Plan), or
 - o Local (as identified in District Plans) scales.
- Sites identified as worthy of protection.
- Presence of rare, At Risk or Threatened species.
- Presence of species of biogeographical interest.
- Presence of genetically or morphologically distinct forms.

The results of this assessment of ecological importance, based on Table 3, Table 5, Table 6 and supporting text of the Environment Institute of Australia and New Zealand (EIANZ) guidelines, is provided in <u>Section 5</u>, and summarised in <u>Section 5.6</u>.

4.7 Assessing Project Impact

The impact of the project on the ecological features, at both a local and national scale, is assessed by considering the effects of the project activities (Section 4.7.1) identified as having a potential to impact on the ecological features (Section 5, summarised in Section 5.6), within the area identified as the PIA (Section 4.7.2). The magnitude of the effect on the ecological feature is assessed based on Table 9 of the EIANZ guidelines, and the combination of magnitude and importance of the ecological feature is used to assign an overall estimate of the degree¹ of the effect at both a local and national scale based on Table 12 of the EIANZ guidelines. An indication of the confidence in the assessment is provided.

The assessment of effect on the vegetation is in <u>Section 6.1</u>, and for avifauna and herpetofauna, the assessment is in <u>Section 6.3</u> and <u>Section 6.5</u>, respectively.

Page 12 of 125 ERA Ecology NZ Ltd

-

¹ 'Level' is used in place of 'degree' in the EIANZ guidelines.

A summary of the project impacts is provided in Section 6.6.

4.7.1 Project activities likely to affect ecological features

The following have been identified as project activities which are likely to result in an effect on the PIA's ecological features. Ecological feature-specific impacts are assessed in <u>Section 6</u>, but general effects are discussed here.

4.7.1.1 Construction of dam embankment

Excavation of the borrow material and road access to constructions site and borrow site are likely to cause damage by removing or crushing plant material. There is also likely to be some noise disturbance during this activity. This activity will result in the damage to some vegetation and temporary disturbance to birds in yet-to-be identified areas surrounding the PIA.

4.7.1.2 Water inundation

A freshwater pond covering 1.36ha and measuring up to 25m deep will be created behind the embankment which will drown all vegetation within the PIA and create new wetland plant and waterfowl habitats around the pond margin.

4.7.1.3 Pond run-down

Lowering of water level by release of water from the pond will create bare areas of silts and rock which, depending on timing and duration of exposure, may create habitat for a wetland plant community and be of some use to waterfowl species.

4.7.1.4 Effect of changes in weed populations

Importation of weed species, either directly through seed contamination of equipment or material, or indirectly by creating favourable establishment sites, could, if unchecked, transform habitats in the surrounding area, making them unsuitable for many species. The severity of this effect depends on the nature of the weed species and the ability to detect and manage an emerging weed problem.

4.7.1.5 Displacement of resident animals

Page 13 of 125 ERA Ecology NZ Ltd

Some animal species, particularly birds, will be displaced from the PIA as a result of project activities. These displaced individuals will compete with individuals from the surrounding area. As the area is assumed to be at carrying capacity, this competition will eventually result in the mortality of either the displaced or resident individuals.

4.7.1.6 Noise

Blasting and operating heavy machinery creates considerable noise which is likely to create a negative reaction in animal species, though this reaction will vary depending on species. Plants are not known to have a reaction to noise.

4.7.1.7 Wind-blown dust

The unconsolidated fine rock and dust that will be created during embankment construction, and dust created by vehicle traffic will, if unmanaged, be blown into the surrounding area. Dust accumulation in areas where this is managed, such as those within existing Macraes mine operations, produce very little wind-blown dust, and noticeable dust accumulation only occurs within the immediate vicinity (<100m) of mine works. Within this zone there is likely to be some reduction in a plant's photosynthetic capacity, potentially resulting in a loss of growth and reproductive output. This effect will be temporary as it is not expected to continue past construction of the embankment.

4.7.1.8 Accidental fire

The Macraes environment is often dry, and accidental fires, if unmanaged, have the potential to burn large areas.

4.7.2 Determining the boundary of ecological impact of project.

The ecological impact that arises from a project's activities may extend beyond the area where that activity occurs. How far this effect may extend depends primarily on the nature of the activity, the mechanism of the impact, and the sensitivity of the ecological features in the surrounding area. In this case the impact area is considered to be the project outline as mapped, plus a 100m buffer where, at worst, there could be either dust blow sufficient to interfere with a plant's photosynthesis. A buffer of 100m was chosen on the basis of the observation of the current extent of these effects in currently active areas of the mine (albeit these effects are managed through mine operating procedures), where negligible impact is observable on plants, even at a distance of 5m from waste rock stacks.

4.7.3 Surrounding area

The area surrounding the PIA may also host notable ecological features that should be avoided, if possible, when planning project infrastructure, particularly site access routes and borrow sites.

Page 14 of 125 ERA Ecology NZ Ltd

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Page 15 of 125 ERA Ecology NZ Ltd

5 Assessment of Ecological Importance

5.1 General Ecological Setting

The Coronation North project (Figure 1), located 6.5km north-west of Macraes Flat township, is situated on the northern end of the Taieri Ridge in the Macraes Ecological District (E.D.), being one of two Ecological Districts that make up the Lammerlaw Ecological Region of Otago (Bibby 1997). The proposed Coal Creek dam is sited in a c. 30m deep gorge of Coal Creek, a tributary of the Mare Burn, which flows into the Taieri River near the township of Hyde. The climate is moderate, with periodic snow-lie during winter and occasional summer drought. The topography of the area consists of rolling hill country with rounded ridge crests and shallowly to deeply incised drainage associated with the Otago peneplain of the Rakaia Terrane, which has probably been exposed since the late Miocene (Forsyth 2001). Rock outcropping is predominantly associated with drainage systems, with frequent tor formation on ridge crests. Underlying lithology is well foliated quartzo-feldspathic biotite greenschist and lesser chlorite schist, with occasional auriferous quartz reefs of Chlorite Subzone 3 and 4, Haast Schist Group, and areas of overlying Miocene to Quaternary sediments (Mutch 1963, McKellar 1966, Forsyth 2001). Soils are loess-derived hygrous Wehenga upland and high country yellow-brown earths.

Past vegetation cover of the Macraes ED is thought to have comprised montane short tussockland grading into subalpine tall tussockland, with areas of mixed hardwood and podocarp forest, kanuka forest and Coprosma-flax scrub (Bibby 1997). In Otago, much of the original vegetation cover has been dramatically altered as a result of anthropogenic factors (McGlone et al. 1995), and this massive vegetation change has also occurred at Macraes (Whitaker 1996). Since European settlement in the 1850's (Thompson 1949), areas have been burnt (sometimes repeatedly) and exotic grasslands induced by ploughing, oversowing, and fertilisation (Whitaker 1996). The present vegetation of the Macraes ED is of a highly modified nature, with approximately 50% of the district dominated by improved pastureland and the remainder comprised of varying density narrow-leaved tussockland, copper tussock-based wetlands and grey shrubland interspersed with remnants of original forest cover and scattered ephemeral wetlands (Bibby 1997, Thorsen pers. obs.). The remaining native vegetation communities currently present within the Macraes area are botanically diverse (Thorsen 2008). They are likely to be derived from the original vegetation communities that existed before human colonisation of the region, but are likely to be considerably reduced in extent and species diversity. Invasion by exotic shrub and tree species, particularly gorse and broom, is an increasing problem in the area.

Of the fauna, fifty-three species of birds have been recorded from the Coronation area, of which thirty-two are indigenous and the remaining twenty-one are introduced (Ryder 2013). The area is also noted for its high diversity of seven lizard species (Whitaker et al. 2002). Some catchments provide habitat for populations of non-migratory galaxiids, freshwater crayfish and longfin eel.

Page 16 of 125 ERA Ecology NZ Ltd

5.2 Flora Ecological Features

5.2.1 Description of vegetation communities

The Coal Creek dam embankment and impoundment area (PIA) includes five vegetation types: riparian herbage along streams and stream flat sedges and grasses, and *Carex coriacea* sedgeland (2.5ha together), bluff herb and shrub vegetation on schist bluffs (0.2ha), gully slope shrublands and mixed vegetation (10.9ha together, 3ha of which is shrubland). These vegetation communities intergrade to some degree.

On the gully bottoms and along streams the vegetation is primarily composed of scattered silver tussock *Poa cita* and hard tussock *Festuca novae-zelandiae* (which forms patches at a few sites) with patches of copper tussock *Chionochloa rubra* subsp. *cuprea* and hybrid tussock (*Chionochloa rubra* subsp. *cuprea* x *Chionochloa rigida* subsp. *rigida*) and pukio *Carex secta* and rushes (mainly exotic soft rush *Juncus effusus*) with large areas of exotic grassland and discrete patches of *Carex coriacea* and *Carex kaloides*. Within the stream bed and along the banks are a range of mainly exotic herbs, rushes edges and grasses intermixed with some indigenous species.

Gully slopes are primarily exotic pasture with extensive areas of low diversity matagouri *Discaria* toumatou and *Coprosma propinqua* shrubland and narrow-leaved tussock *Chionochloa rigida* subsp. *rigida* at varying stature and density, some scattered golden spaniard *Aciphylla aurea*, and rare plants of coral broom *Carmichaelia crassicaulis* subsp. *crassicaulis*. Some small groves of *Coprosma intertexta* are present.

The schist bluffs are large examples for the area and have a high diversity of mainly indigenous herbs, shrubs and grasses, including patches of *Veronica rakaiensis* and narrow-leaved tussock, with many plants of blue tussock *Poa colensoi*, wheatgrass *Anthosachne solandri* and porcupine shrub *Melicytus alpinus*.

5.2.2 Vegetation representativeness & pattern

The PIA is representative of the general vegetation patterns in this area of the Macraes E.D., although there is a gradient from west to east in this area with some species becoming less, or more, common. This influences the species composition of the vegetation types. The community patterning of narrow-leaved tussock grassland on broad-topped spurs and slopes with short tussock grassland in drier and/or heavier grazed areas and where flatter and less-rocky areas have been cultivated using ploughing, and with interfingered shallowly- to moderately-incised drainage systems hosting gully wetlands and bluff vegetation is typical of this area.

The bluff communities are representative of those that occur in shallow incised gullies throughout the Macraes E.D., but with higher species diversity reflecting their larger nature.

Page 17 of 125 ERA Ecology NZ Ltd

Overall, the PIA is assessed² as of **high** representativeness importance.

5.2.3 *Ecological integrity*

The PIA is part of a mosaic of natural and exotic vegetation communities that are found throughout the wider Macraes area. All natural vegetation communities (except possibly bluff communities) in the Macraes E.D. are decreasing in extent due to conversion to pasture through ploughing and, to a lesser extent, irrigation. They are also being degraded through weed invasion, which is being facilitated by repeated burning, changes in stocking, and fertiliser application. Exotic mammals and invertebrates are likely to be having both a negative (through browsing of plants and preventing regeneration) and positive effect (through maintaining some plant communities by suppressing competing weed species). In areas where sheep grazing and land management practices has been continued in a similar fashion for many years, the vegetation appears to reach a semi-stable state with a high diversity of both indigenous and exotic species.

Some areas within the PIA are reasonably ecologically intact, although there is some damage in nearly all areas (excepting parts of the bluff communities) from ongoing grazing by sheep and cattle. The PIA is likely to be playing some role in supporting a metapopulation of some plant species, but the extent and type of this role is unknown and likely to vary between species.

Overall, the PIA is assessed³ as of **moderate** ecological integrity importance.

5.2.4 *Vegetation rarity*

Because of the size of the bluff communities they could be considered as vegetation communities that are rare in the Macraes E.D., mainly due to their limited extent and infrequent representation.

Overall, the vegetation communities within the PIA are assessed⁴ as of **high** rarity importance.

5.2.5 *Botanical diversity*

The total botanical diversity of the PIA is not recorded, being part of the wider botanical survey of the Coronation North area. The Coronation North area has high botanical diversity, with 162 indigenous

Page 18 of 125 ERA Ecology NZ Ltd

² Using http://ecan.govt.nz/publications/Plans/ecological-significance-indigenous-vege-canterbury.pdf.

³ Ecological integrity (community intactness) is not addressed in the EIANZ Guidelines. The value used here is an expert assessment.

⁴ The use of the Land Environment New Zealand (LENZ) model for assessing vegetation rarity, as proposed by some organisations (e.g., Ecan), is evaluated separately in this document. This assessment of the rarity of vegetation communities is based on estimated representation within the Ecological District of physical vegetation communities.

species and 79 exotic species being recorded within 539ha. The Coal Creek dam area contains species that were not noted elsewhere during the Coronation North botanical survey, namely *Senecio dunedinensis, Veronica rakaiensis, Pachycladon cheesemanii, Dracophyllum uniflorum* var. rosmarinifolium, a distinctive form of *Carex testacea* and a distinctive form of *Coprosma dumosa*.

Overall, the PIA is assessed⁵ as of **high** botanical diversity importance.

5.2.6 Ecological function and ecosystem services

5.2.6.1 Linkages and networks

The PIA probably plays a **moderate** role in providing a patchwork of natural ecological areas assisting the local persistence of some species.

5.2.6.2 Buffering

The PIA probably plays a **minor** role in buffering increased sedimentation arising from nearby cultivated areas.

5.2.6.3 Support services

The PIA apart has a **moderate-minor** ecosystem support services role in protecting genetic diversity.

5.2.6.4 Regulating services

The PIA apart has a **minor** ecosystem regulating services role in reducing erosion of underlying soils, and regulating flood flows in the area.

5.2.6.5 Cultural services

The PIA apart has a **negligible** ecosystem cultural services role.

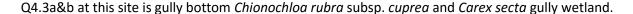
5.2.6.6 Provisioning services

The PIA apart has a **minor** ecosystem provisioning services role in providing irrigation water to downstream areas.

Page 19 of 125 ERA Ecology NZ Ltd

-

⁵ Using http://ecan.govt.nz/publications/Plans/ecological-significance-indigenous-vege-canterbury.pdf.


Overall, the PIA is assessed as providing a **moderate** ecosystem service.

5.2.7 Notable vegetation communities or sites

5.2.7.1 Indigenous vegetation associated with Threatened land environments (defined by Land Environments of New Zealand at Level IV) that have ≤20% remaining in indigenous cover (Ministry for Environment and Department of Conservation 2007, Walker *et al.* 2007, 2008).

Three Level IV LENZ categories are mapped for the PIA (Figure 4), all of which are currently classified as Threatened Land Environments: the majority of the area is within the Acutely Threatened N3.1e, N3.3a, with small areas of the Chronically Threatened Q4.3a and q4.3b.

N3.1e at this site is largely covered by either a mosaic of community types including gully wetlands, short tussock grassland, gully slope shrublands and bluff communities.

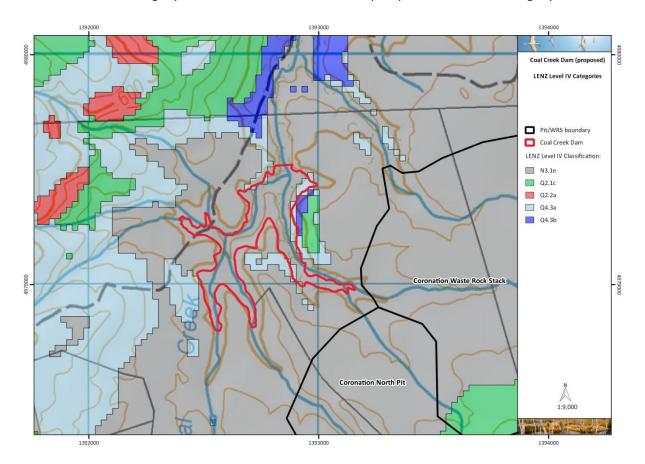


Figure 4. LENZ classification of the PIA at Level IV.

Page 20 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

5.2.7.2 Indigenous vegetation associated with sand dunes and wetlands, ecosystem types that have become uncommon due to human activity and are a National Priority for Protection (Ministry for Environment and Department of Conservation 2007).

The PIA includes no vegetation communities that are a National Priority for Protection.

5.2.7.3 Indigenous vegetation associated with 'Historically Rare' or 'Threatened' terrestrial ecosystem types (Ministry for Environment and Department of Conservation 2007, Williams *et al.* 2007, Holdaway *et al.* 2012).

The PIA includes no Historically Rare ecosystems.

5.2.7.4 Wetlands of National Importance or Ramsar sites.

The PIA includes no Wetlands of National Importance or Ramsar sites.

5.2.7.5 Sites or communities identified as significant in Regional Plan

The indigenous vegetation communities within the PIA are assessed as significant under the criteria in the ORC Regional Plan, on the basis that they are representative and are habitat for rare or threatened indigenous species. There are no wetlands identified by the ORC as Regionally Significant within the PIA.

5.2.7.6 Sites or communities identified as significant in District Plans

No indigenous vegetation communities within the PIA that are located within the DCC boundary have been listed as significant in Schedule 25.4 of the DCC District Plan.

5.2.7.7 Sites identified as recommended for protection

This site was not identified by Bibby (1997) as a Recommended Area for Protection (RAP).

Page 21 of 125 ERA Ecology NZ Ltd

5.2.1 Importance overall of vegetation communities

Overall, the vegetation communities present within the PIA are assessed as being of **very high** ecological importance. The communities are of high representation, diversity and moderate integrity importance. There are three Threatened Level IV land environments that are overlain by some natural vegetation.

5.3 Threatened, At Risk, or rare plant species

Thirteen plant species that occur within the PIA are either currently classified as Threatened, At Risk or Data Deficient (Townsend et al. 2007, de Lange et al. 2013), or are listed as 'Threatened Plants' in Appendix 16A of the DCC District Plan, or are thought to be rare in the Macraes E.D. based on the author's observations (Figure 5).

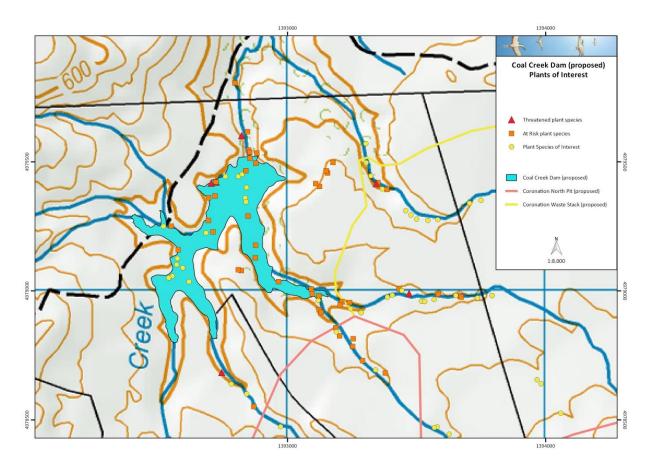


Figure 5. Locations of Threatened, At Risk and other plant species of interest (Data Deficient, rare plants) within the PIA.

Page 22 of 125 ERA Ecology NZ Ltd

5.3.1 Threatened species

Two Threatened (Townsend et al. 2007) species occur within the PIA, the Nationally Vulnerable groundsel *Senecio dunedinensis* and the Nationally Vulnerable cress *Pachycladon cheesemanii*.

5.3.1.1 Nationally Vulnerable species

1. Pachycladon cheesemanii Heenan et A. Mitch. (a dryland cress, Brassicaceae).

Distribution within project

Two plants of Pachycladon cheesemanii are present in an overhang in one bluff within the PIA.

Summary of existing information

Pachycladon cheesemanii (previously known as *Ischnocarpus novae-zelandiae* (Hook.f.) O.E.Schulz) is currently classified as Nationally Vulnerable, with the qualifier Sparse, on the basis that the total population is estimated to consist of 5,000 – 20,000 individuals in widely scattered sites and there is a predicted decline of 30-70%. Previously it has been assessed as Sparse in 1999, Gradual Decline in 2004 and Nationally Vulnerable in 2009.

Pachycladon cheesemanii is distributed throughout drier areas of the eastern South Island from Marlborough to northern Southland, with the majority of records in western Otago and the Rock & Pillar Range. This is the first known record of this species from the Macraes E.D. This species has been included in past studies evaluating the biogeographic pattern of New Zealand.

Pachycladon cheesemanii is considered threatened through weed invasion of the naturally sparsely vegetated environments it favours and its palatability to browsing animals. Nowadays most plants are known only from bluffs or overhangs. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats.

The ecological importance of the population of this species within the PIA is categorised as **very high** on the basis of its:

- 1) Nationally Vulnerable conservation status;
- 2) the few individuals at the sites where it occurs;
- 3) the inferred loss of previously occupied sites through weed invasion;
- 4) its vulnerability to browsers;
- 5) its use in biogeographic theory.

Page 23 of 125 ERA Ecology NZ Ltd

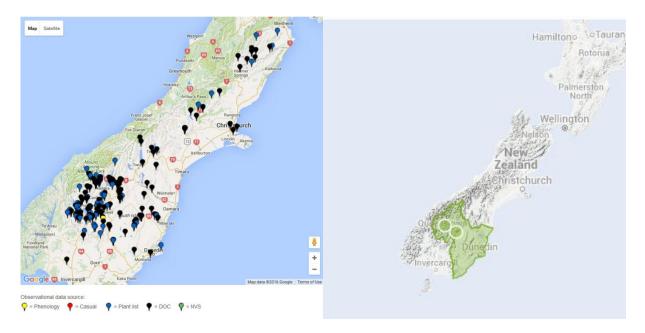


Figure A. Distribution of *Pachycladon cheesemanii* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

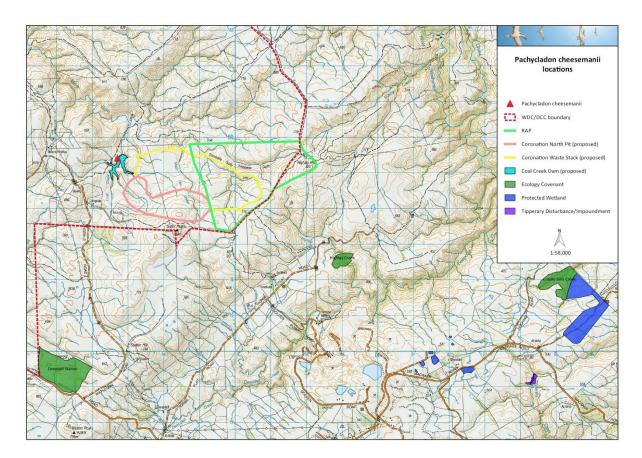


Figure B. Distribution of *Pachycladon cheesemanii* within the PIA and the wider OceanaGold project area.

Page 24 of 125 ERA Ecology NZ Ltd

Data sources used in this assessment:

- de Lange, P.J; Heenan, P.B; Given, D.R; Norton, D.A; Ogle, C; Johnson, P.N; Cameron, E.K. 1999.

 Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 37: 603–628.
- Heenan, P.B; Mitchell, A.D; Koch, M. 2002. Molecular systematics of the New Zealand *Pachycladon* (Brassicaceae) complex: generic circumscription and relationships to *Arabidopsis* sens. lat. and *Arabis* sens. lat. New Zealand Journal of Botany 40: 543-562.
- Mitchell, A.D; Heenan, P.B. 2002. Genetic variation within the *Pachycladon* (Brassicaceae) complex based on fluorescent AFLP data. Journal of the Royal Society of New Zealand 32: 427-443.
- Heenan, P.B; Mitchell, A.D. 2003. Phylogeny, biogeography and adaptive radiation of *Pachycladon* (Brassicaceae) in the mountains of South Island, New Zealand. Journal of Biogeography 30: 1737-1749.
- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- McBreen, K; Heenan, P.B. 2006. Phylogenetic relationships of *Pachycladon* (Brassicaceae) species based on three nuclear and two chloroplast DNA markers. New Zealand Journal of Botany 44: 377-386.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- de Lange, P; Heenan, P; Norton, D; Rolfe, J; Sawyer, J. 2010. Threatened plants of New Zealand. Canterbury University Press, Christchurch.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.
- NZPCN http://www.nzpcn.org.nz/flora_details.aspx?ID=186 accessed 15 April 2016.
- Nature Watch http://naturewatch.org.nz/taxa/404450-Pachycladon-cheesemanii accessed 15 April 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Dr M. Thorsen personal communication with Marcia Dale, Dunedin.

Page 25 of 125 ERA Ecology NZ Ltd

2. Senecio dunedinensis Belcher (a groundsel daisy, Asteraceae).

Distribution within project

Single plants of Senecio dunedinensis are present on ledges at two sites within the PIA.

Summary of existing information

Senecio dunedinensis is currently classified as Nationally Vulnerable, with the qualifiers Data Poor, Extreme Fluctuations, and Sparse, on the basis that the total population is estimated to be stable and occupy an area of ≤100 ha (1 km²), the widely spaced populations vary greatly in the number of individuals from year-to-year, and the paucity of information on this species. Previously it has been assessed as Sparse in 1999 and 2004, and Naturally Uncommon in 2009.

This species is distributed as widely spaced populations in the east of the South Island, with the majority of records being in west Otago and the Mt Cook area. In the wider Macraes area it is known from one site on OceanaGold tenure land, in the Cranky Jims Wetland Covenant, and from one plant between Redbank and Ramrock Roads. It inhabits cliffs and damp areas in wetlands.

This species is considered to be in decline primarily through competition with exotic plants, but many flower heads are parasitized by invertebrate larvae and the foliage is also susceptible to exotic invertebrates. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats.

The ecological importance of the population of this species within the PIA is categorised as **very high** on the basis of its:

- 1) Nationally Vulnerable conservation status;
- 2) the lack of information on the species.

Page 26 of 125 ERA Ecology NZ Ltd

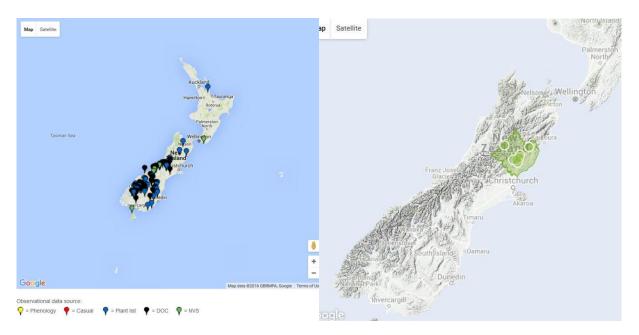


Figure A. Distribution of *Senecio dunedinensis* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right, no wild records) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

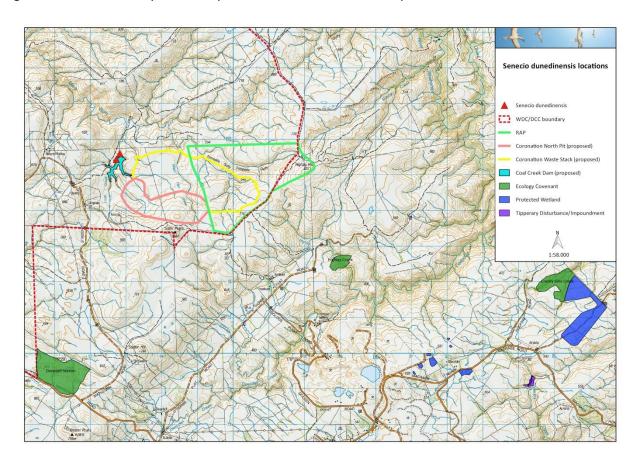


Figure B. Distribution of Senecio dunedinensis within the PIA and the wider OceanaGold project area.

Page 27 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Data sources used in this assessment:

- de Lange, P.J; Heenan, P.B; Given, D.R; Norton, D.A; Ogle, C; Johnson, P.N; Cameron, E.K. 1999.

 Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 37: 603–628.
- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.

NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=318 accessed 14 April 2016.

Nature Watch http://naturewatch.org.nz/taxa/405962-Senecio-dunedinensis accessed 14 April 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 28 of 125 ERA Ecology NZ Ltd

5.3.2 At Risk species

Six At Risk plant species are known to occur within the PIA: two species that are classified as Declining and four species classified as Naturally Uncommon.

5.3.2.1 Declining

Two species classified as Declining are known to occur within the PIA: coral broom *Carmichaelia* crassicaulis subsp. crassicaulis and the divaricating shrub *Coprosma intertexta*.

1. Carmichaelia crassicaulis Hook.f. subsp. crassicaulis (coral broom, Fabaceae).

Distribution within project

This thick-stemmed broom was recorded at twelve sites within and four sites near the PIA. All sites were on rock outcrops or gully slopes bordering incised gullies, and comprise 2 - 50 individuals, including some young plants.

Summary of existing information

Carmichaelia crassicaulis subsp. crassicaulis is currently classified as Declining, with the qualifier Recruitment Failure, on the basis that the total population is estimated to number 20,000–100,000 mature individuals with a predicted decline of 10–50%, and there is little evidence of young plants in the populations. Previously it has been assessed as Declining in 1999, as Gradual Decline in 2004, and as Declining in 2009.

This species is distributed through the eastern South Island from Marlborough to Otago, with the majority of the populations in Otago. In the wider Macraes area it occurs on OceanaGold tenure land adjacent to the PIA in Coal Creek and Trimbells Gully. It is known from 41 sites between Red Bank and Ramrock Roads. It inhabits a variety of dry, usually rocky, sites.

This species is considered to be in decline primarily through loss of its dryland habitat and lack of recruitment of young individuals into populations. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats (but even at these sites recruitment appears to be rare). A nearby population at Nenthorn has many young seedlings that have germinated after stock were fenced from the area.

The ecological importance of the population of this species within the PIA is categorised as **high** on the basis of its:

- 1) Declining conservation status;
- 2) the reduction in extent of its dryland habitat;

Page 29 of 125 ERA Ecology NZ Ltd

3) the lack of young plants within populations.

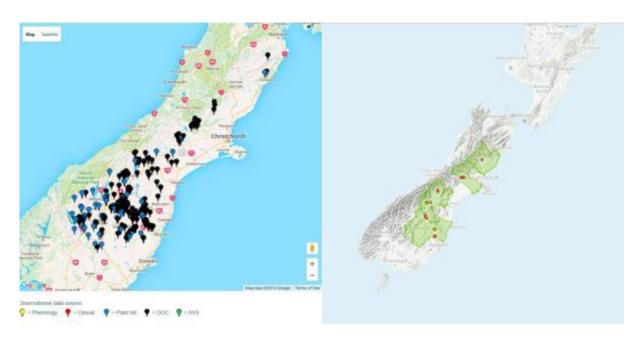


Figure A. Distribution of *Carmichaelia crassicaulis* subsp. *crassicaulis* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

Figure B. Distribution of *Carmichaelia crassicaulis* subsp. *crassicaulis* within the PIA and the wider OceanaGold project area.

Page 30 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Data sources used in this assessment:

- Heenan, P.B. 1998. An emended circumscription of *Carmichaelia*, with new combination, a key, and notes on hybrids. New Zealand Journal of Botany 36: 53-63.
- de Lange, P.J; Heenan, P.B; Given, D.R; Norton, D.A; Ogle, C; Johnson, P.N; Cameron, E.K. 1999.

 Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 37: 603–628.
- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.

NZPCN http://www.nzpcn.org.nz/flora_details.aspx?ID=152 accessed 27 January 2016.

Nature Watch http://naturewatch.org.nz/taxa/412101 accessed 27 January 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 31 of 125 ERA Ecology NZ Ltd

2. Coprosma intertexta G.Simpson (a narrow-leaved divaricating coprosma, Rubiaceae).

Distribution within project

This reddish divaricating small-leaved Coprosma was recorded at 6 sites within the PIA and one adjacent site upstream at the base of rock outcrops bordering incised gullies or in bluff couloirs and comprise 1 individual to groups covering 20m x 10m.

Summary of existing information

Coprosma intertexta is currently classified as Declining, with the qualifiers Data Poor and Sparse, on the basis that the total population is estimated, using limited data, to occupy a total of ≤10,000 ha (100 km²), with a predicted decline of 10–50%, and populations are widely spaced. Previously it has been assessed as Rare and Endangered in 1976, Sparse in 1999 and 2004, and as Relict in 2009.

This species is distributed through the eastern South Island from Marlborough to Otago. Records west of the Southern Alps are likely to be misidentifications of other narrow-leaved *Coprosma* species. In the wider Macraes area it occurs on OceanaGold tenure land adjacent to the PIA in Coal Creek. It is known from three sites between Red Bank and Ramrock Roads. It inhabits a variety of dry, usually rocky, sites.

This species is considered to be in decline primarily through loss of its dry, shrubland habitat. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats.

The ecological importance of the population of this species within the PIA is categorised as **High** on the basis of its:

- 1) Declining conservation status;
- 2) the reduction in extent of its dry shrubland habitat.

Page 32 of 125 ERA Ecology NZ Ltd

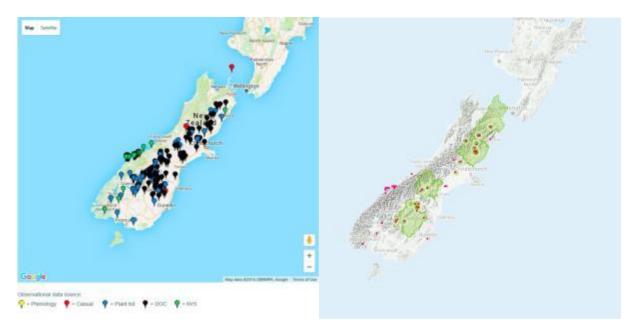


Figure A. Distribution of *Coprosma intertexta* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

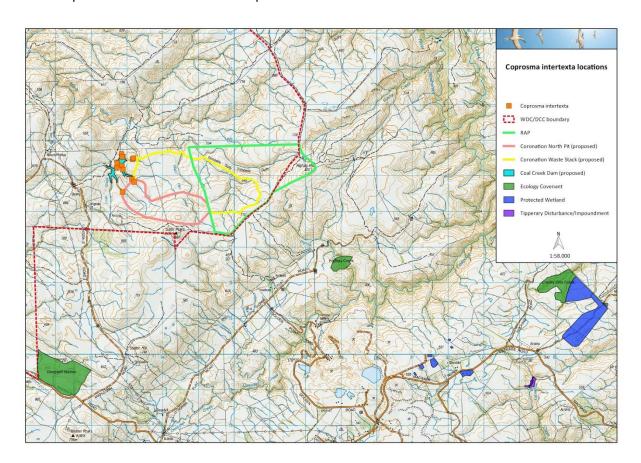


Figure B.

Distribution of *Coprosma intertexta* within the PIA and the wider OceanaGold project area.

Page 33 of 125 ERA Ecology NZ Ltd

Data sources used in this assessment:

- de Lange, P.J; Heenan, P.B; Given, D.R; Norton, D.A; Ogle, C; Johnson, P.N; Cameron, E.K. 1999.

 Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 37: 603–628.
- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- Glenny, D., Cruickshank, J., Morse, C. and Rolfe, J. 2010. Key to Coprosma species of New Zealand. http://www.landcareresearch.co.nz/resources/identification/plants/coprosma-key accessed 27 January 2016.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.
- NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=245 accessed 27 January 2016.
- Nature Watch http://naturewatch.org.nz/taxa/401020-Coprosma-intertexta accessed 27 January 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 34 of 125 ERA Ecology NZ Ltd

5.3.2.2 Naturally Uncommon

Four species classified as Naturally Uncommon are known to occur within the PIA: Hooker's mountain daisy *Celmisia hookeri*, sprawling inaka *Dracophyllum uniflorum* var. *frondosum*, cress *Cardamine bilobata* and wetland daisy *Lagenophora barkeri*.

1. Celmisia hookeri Cockayne (Hooker's mountain daisy, Asteraceae).

Distribution within project

This cliff daisy was recorded as scattered plants and large groups of plants inhabiting the larger schist rock outcrops and bluffs in the PIA and surrounding area.

Summary of existing information

Celmisia hookeri is currently classified as Naturally Uncommon, with the qualifier Sparse, on the basis of its range being restricted to two areas: north-eastern Otago and northern Southland, with widely spaced populations. Previously it has been assessed as Sparse in 1999, as Range Restricted in 2004, and Naturally Uncommon in 2009.

This species occurs on rock outcrops and bluffs in north-eastern Otago and northern Southland. In the wider Macraes area it occurs on OceanaGold tenure land at multiple sites, including in the Deepdell Covenant, Cranky Jims Shrubland Covenant, and Crank Jims Wetland Covenant, and it is known from eight sites between Red Bank and Ramrock Roads (which is the eastern limit for this species). Population sizes in these area ranges up to several hundred plants at some sites, though 20-50 plants at a site is more usual. It inhabits schist rock bluffs, outcrops and rocky areas, and (where stock are absent) steep gully sides.

This species is considered to be at risk because of its limited range and susceptibility to browsers. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats.

The ecological importance of the population of this species within the PIA is categorised as **moderate-high** on the basis of its:

- 1) Naturally Uncommon conservation status;
- 2) susceptibility to browsers.

Page 35 of 125 ERA Ecology NZ Ltd

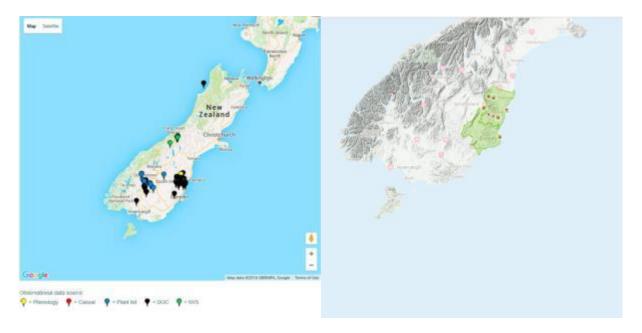


Figure A. Distribution of *Celmisia hookeri* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

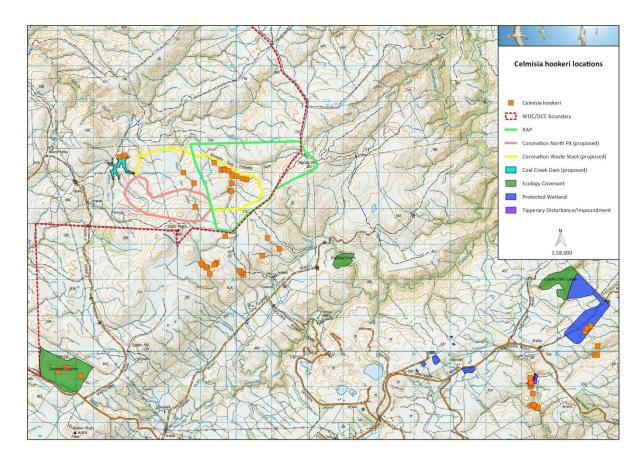


Figure B. Distribution of *Celmisia hookeri* within the PIA and the wider OceanaGold project area (notes: not all locations of this species are mapped).

Page 36 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Data sources used in this assessment:

- de Lange, P.J; Heenan, P.B; Given, D.R; Norton, D.A; Ogle, C; Johnson, P.N; Cameron, E.K. 1999.

 Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 37: 603–628.
- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.

NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=239 accessed 1 February 2016.

Nature Watch http://naturewatch.org.nz/taxa/400560 accessed 1 February 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 37 of 125 ERA Ecology NZ Ltd

2. Dracophyllum uniflorum var. frondosum G.Simpson (sprawling inaka, Epacridaceae).

Distribution within project

This sprawling needle-leaved shrub was recorded as scattered plants and larger groups on the larger schist rock outcrops and bluffs in the PIA.

Summary of existing information

Dracophyllum uniflorum var. *frondosum* is currently classified as Naturally Uncommon, with the qualifier Sparse, on the basis of its range being restricted to two areas, with widely spaced populations. Previously it has been assessed as Range Restricted in 2004, and Naturally Uncommon in 2009.

This species occurs on valley slopes, rock outcrops and bluffs in Otago and Nelson Lakes, where it can be locally abundant. In the wider Macraes area it occurs on OceanaGold tenure land at several sites, including in the Deepdell Covenant, and it is known from multiple sites between Red Bank and Ramrock Roads. Population sizes in these area ranges up to around a hundred plants at some sites, though 10-20 plants at a site is more usual. It inhabits schist rock bluffs and occasionally smaller rocky outcrops.

This species is considered to be at risk because of its limited range and restriction to rocky habitats. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats.

The ecological importance of the population of this species within the PIA is categorised as **moderate-high** on the basis of its:

- 1) Naturally Uncommon conservation status;
- 2) restricted habitat.

Page 38 of 125 ERA Ecology NZ Ltd

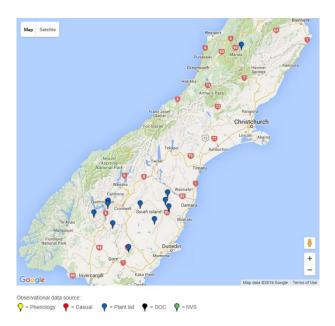


Figure A. Distribution of *Dracophyllum uniflorum* var. *frondosum* in New Zealand from the NZ Plant Conservation Network database (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

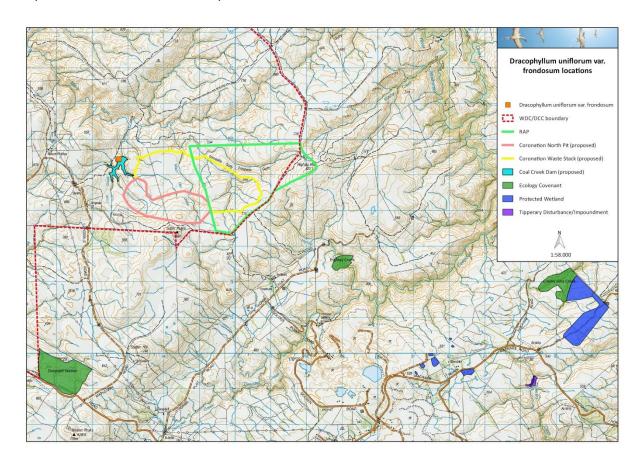


Figure B. Distribution of *Dracophyllum uniflorum* var. *frondosum* within the PIA and the wider OceanaGold project area (notes: not all locations of this species are mapped).

Page 39 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Data sources used in this assessment:

- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- Venter, S. 2009. A taxonomic revision of the genus *Dracophyllum* Labill. (Ericaceae). Unpub. PhD Thesis, Victoria university of Wellington.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.

NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=475 accessed 14 April 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 40 of 125 ERA Ecology NZ Ltd

3. Cardamine bilobata Kirk (a native bittercress, Brassicaceae).

Distribution within project

This small herb was recorded as scattered individuals totalling c. 20 plants on two of the larger schist rock bluffs in the PIA. It is probable more plants are present in the higher areas of the bluffs.

Summary of existing information

Cardamine bilobata is currently classified as Naturally Uncommon, with the qualifiers Range Restricted and Sparse because of the widely spaced populations (the reasoning behind the qualifier Range Restricted is not readily apparent). Previously it has been assessed as Data Deficient in 2004 and Naturally Uncommon in 2009.

This species occurs on rocky sites and tussockland along the Southern Alps and in scattered eastern localities. This is the first record of this species for the Ecological District. There is an element of taxonomic uncertainty with this species, particularly involving plant growing at higher elevations and on different mineral substrates. The plants within the PIA are very similar to those collected from the type locality at Kurow.

This species is considered to be at risk because of its susceptibility to browsers. No conservation programmes are known for this species.

The ecological importance of the population of this species within the PIA is categorised as **moderate-high** on the basis of its:

- 1) Naturally Uncommon conservation status;
- 2) first record of the species within the E.D.;
- 3) only known locality of this form of the species in Central Otago;
- 4) susceptibility to browsers.

Page 41 of 125 ERA Ecology NZ Ltd

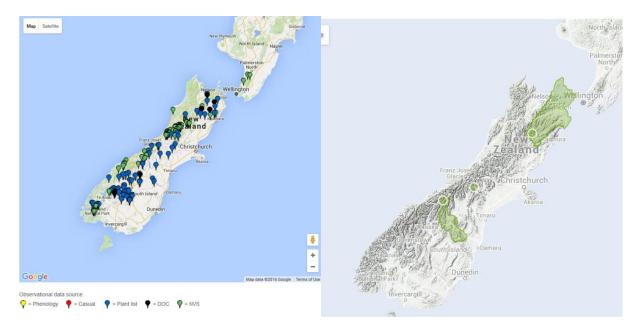


Figure A. Distribution of *Cardamine bilobata* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

Figure B. Distribution of *Cardamine bilobata* within the PIA and the wider OceanaGold project area.

Page 42 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Data sources used in this assessment:

- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.

NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=733 accessed 14 April 2016.

Nature Watch http://naturewatch.org.nz/taxa/400384-Cardamine-bilobata accessed 14 April 2016.

Te Papa collections online http://collections.tepapa.govt.nz/taxon/22129 accessed 14 April 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

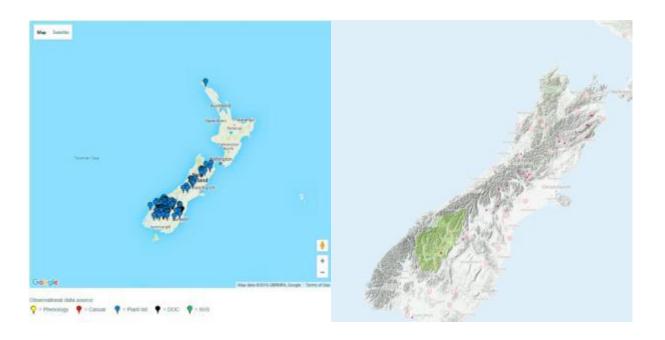
Page 43 of 125 ERA Ecology NZ Ltd

4. Lagenophora barkeri Kirk (a wetland daisy, Asteraceae).

Distribution within project

This wetland daisy was recorded at one site in the PIA, in a wetland at the base of a bluff.

Summary of existing information


Lagenophora barkeri is currently classified as Naturally Uncommon, with the qualifier Sparse, on the basis of its range being restricted to South Island wetlands, and with widely spaced populations. Previously it has been assessed as Not Threatened in 1999 and 2004, and Naturally Uncommon in 2009.

This species occurs in higher-altitude wet places in the east of the South Island. In the wider Macraes area it occurs on OceanaGold tenure land in Maori Hen Creek. It inhabits gully wetlands, stream edges and wet bluff bases.

This species is considered to be at risk because of its limited range. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats.

The ecological importance of the population of this species within the PIA is categorised as **moderate-high** on the basis of its:

- 1) Naturally Uncommon conservation status.
- 2) Degradation of its wetland habitat.

Page 44 of 125 ERA Ecology NZ Ltd

Figure A. Distribution of *Lagenophora barkeri* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

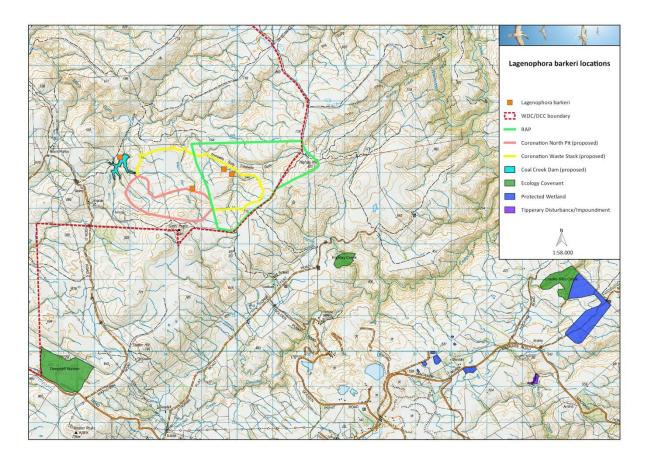


Figure B. Distribution of Lagenophora barkeri within the PIA and the wider OceanaGold project area.

Data sources used in this assessment:

- Drury, D.G. 1974. A broadly based taxonomy of *Lagenifera* and *Solenogyne* (Compositae-Astereae), with an account of their species in New Zealand. New Zealand Journal of Botany 12: 365-396.
- de Lange, P.J; Heenan, P.B; Given, D.R; Norton, D.A; Ogle, C; Johnson, P.N; Cameron, E.K. 1999.

 Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 37: 603–628.
- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.

Page 45 of 125 ERA Ecology NZ Ltd

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.

NZPCN http://www.nzpcn.org.nz/flora_details.aspx?ID=2182 accessed 1 February 2016.

Nature Watch http://naturewatch.org.nz/taxa/468638-Lagenophora-barkeri accessed 1 February 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 46 of 125 ERA Ecology NZ Ltd

5.3.3 Data Deficient species

One species classified as Data Deficient are known to occur within the PIA: the wetland willowherb *Epilobium insulare*.

1. Epilobium insulare Hausskn. (a wetland willowherb, Onagraceae).

Distribution within project

This wetland willowherb was recorded as small populations of 20-30 plants at three sites in the PIA, and several groups in areas immediately adjacent to the PIA.

Summary of existing information

Epilobium insulare is currently classified as Data Deficient, with the qualifier Range Restricted, on the basis of the lack of knowledge on its distribution and conservation status. Previously it has been assessed as Not Threatened in 1999 and 2004, and Declining in 2009.

This species occurs nearly throughout New Zealand from the Waikato south, and on the Chatham Islands. In the wider Macraes area it occurs on OceanaGold tenure land in the Deepdell and Cranky Jims Wetland Covenants, and is widespread between Red Bank and Ramrock Roads. It inhabits higheraltitude wetlands.

This species is considered to be at risk because of the lack of knowledge of its distribution and threats. Recent survey work has shown it to be widespread, with numerous populations in areas where it is present, and therefore of little concern, although at most sites only a few plants are present. No conservation programmes are known for this species, but it occurs in several protected areas where there appear to be few threats.

The ecological importance of the population of this species within the PIA is categorised as **Moderate** (using a modification⁶ of Table 5 of EIANZ guidelines) on the basis of its:

- 1) Data Deficient status;
- 2) degradation of wetland habitats;
- 3) rarity within the E.D.

Page 47 of 125 ERA Ecology NZ Ltd

⁶ Data deficient species are not explicitly discussed in the EIANZ guidelines. In this document they are assumed to be a rare species

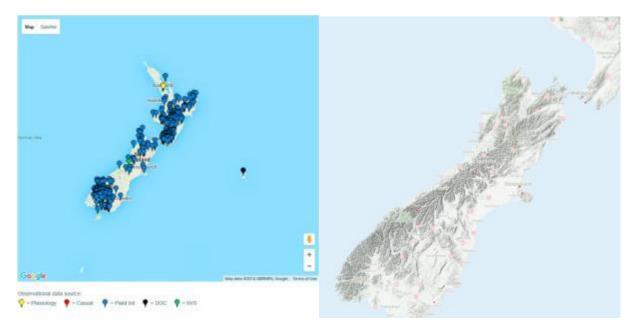


Figure A. Distribution of *Epilobium insulare* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

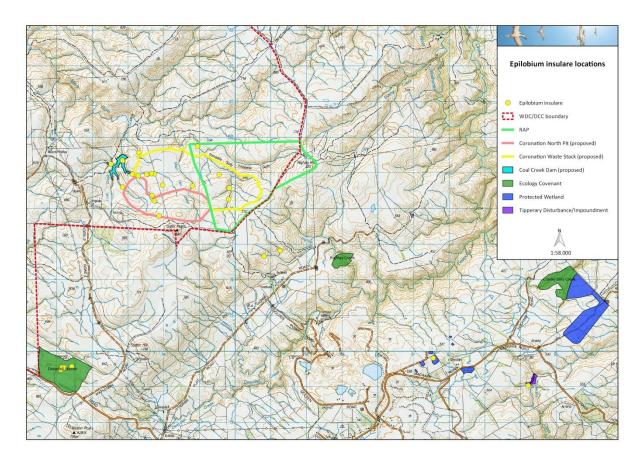


Figure B. Distribution of *Epilobium insulare* within the PIA and the wider OceanaGold project area.

Page 48 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Data sources used in this assessment:

- Raven, P.H; Raven, T.E. 1976. The genus *Epilobium* (Onagraceae) in Australasia: a systematic and evolutionary study. DSIR Bulletin No. 216. DSIR, Wellington.
- de Lange, P.J; Heenan, P.B; Given, D.R; Norton, D.A; Ogle, C; Johnson, P.N; Cameron, E.K. 1999.

 Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 37: 603–628.
- de Lange, P.J; Norton, D.A; Heenan, P.B; Courtney, S.P; Molloy, B.P.J; Ogle, C.C; Rance, B.D; Johnson, P.N; Hitchmough, R.A. 2004. Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.
- de Lange, P.J; Norton, D.A; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Hitchmough, R.A; Townsend, A.J. 2009. Threatened and uncommon plants of New Zealand (2008 revision). New Zealand Journal of Botany 47: 61–96.
- de Lange, P.J; Rolfe, J.R; Champion P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.

NZPCN http://www.nzpcn.org.nz/flora_details.aspx?ID=1849 accessed 1 February 2016.

Nature Watch http://naturewatch.org.nz/taxa/401681-Epilobium-insulare accessed 1 February 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 49 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

5.3.4 Rare species

Four species that are considered rare are known to be present within the PIA: two that are uncommon within the Macraes ED and two are listed as 'Threatened Plants' in Appendix 16A of the DCC District Plan.

5.3.4.1 Species uncommon in Ecological District

Two species that are uncommon within the Macraes Ecological District are known to be present within the PIA: the sedge *Carex kaloides* and shrub *Veronica rakaiensis*.

1. Carex kaloides Petrie (a wetland sedge, Cyperaceae).

Distribution within project

This sedge was recorded in gully bottoms at several sites in the PIA. Population size varies between patches of $1m^2$ to patches 5m x 3m in size.

Summary of existing information

Carex kaloides occurs throughout the eastern South Island, usually inhabiting damp stream terraces. This species was first recorded within the Macraes E.D. in 2014. It is now known from the wider Macraes area on OceanaGold tenure land in the Tipperary Fenced Area and as a large population near Sutton.

The ecological importance of the population of this species within the PIA is categorised as **Moderate** on the basis of its:

1) Rarity within the Ecological District.

Page 50 of 125 ERA Ecology NZ Ltd

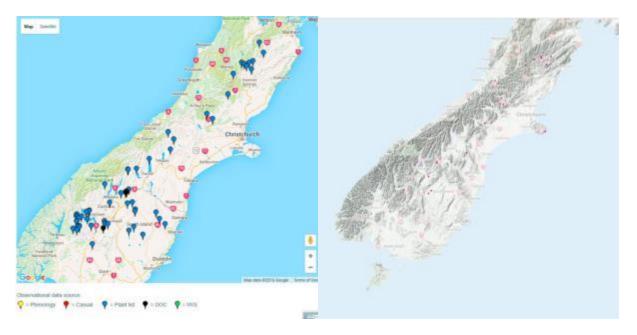


Figure A. Distribution of *Carex kaloides* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

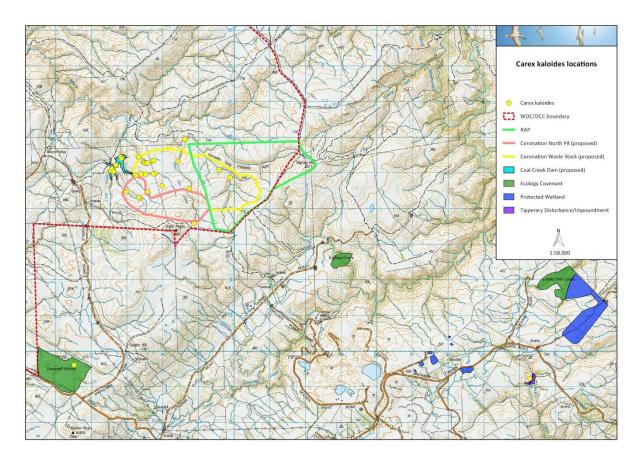


Figure B. Distribution of *Carex kaloides* within the PIA and the wider OceanaGold project area.

Page 51 of 125 ERA Ecology NZ Ltd

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Data sources used in this assessment:

NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=235 accessed 3 February 2016.

Nature Watch http://naturewatch.org.nz/taxa/400419-Carex-kaloides accessed 3 February 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 52 of 125 ERA Ecology NZ Ltd

2. Veronica rakaiensis J.B.Armstr. (a shrub hebe, Plantaginaceae).

Distribution within project

Veronica rakaiensis was recorded from one large schist bluff in the PIA where there is a population of c. 100 plants.

Summary of existing information

Veronica rakaiensis is a species rarely recorded within the Macraes E.D. It occurs in damper gullies throughout the eastern South Islands, with the majority of records in western Otago and Southland. It is known from the wider Macraes area on OceanaGold tenure land at Trimbells Gully and the Deepdell Covenant and at two sites between Red Bank and Ramrock roads.

Ecological importance of species

The ecological importance of the population of this species within the PIA is categorised as **Moderate** on the basis of its:

1) Rarity within the Ecological District.



Figure A. Distribution of *Veronica rakaiensis* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

Page 53 of 125 ERA Ecology NZ Ltd

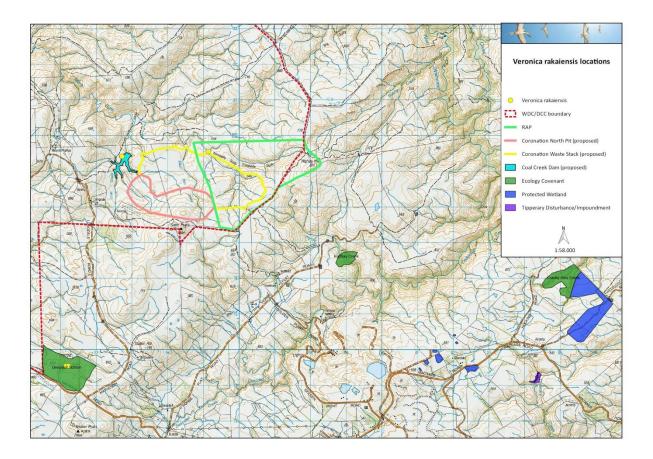


Figure B. Distribution of Veronica rakaiensis within the PIA and the wider OceanaGold project area.

Data sources used in this assessment:

Bayly, M; Kellow, A. 2006. An illustrated guide to New Zealand hebes. Te Papa Press, Wellington.

NZPCN http://www.nzpcn.org.nz/flora_details.aspx?ID=2004 accessed 14 April 2016.

Nature Watch http://naturewatch.org.nz/taxa/406883-Veronica-rakaiensis accessed 14 April 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 54 of 125 ERA Ecology NZ Ltd

5.3.4.2 Species listed as 'Threatened Plants' in Appendix 16A of the DCC District Plan.

Three species present within the PIA are listed in Appendix 16A of the DCC District Plan: *Carmichaelia crassicaulis* subsp. *crassicaulis*, *Olearia bullata* and *Chionochloa rubra* subsp. *cuprea*. Assessments of the status of *Carmichaelia crassicaulis* subsp. *crassicaulis* is provided in Section 5.3.2.1.

1. Olearia bullata H.D.Wilson et Garn.-Jones (a small-leaved tree daisy, Asteraceae).

Distribution within project

There are scattered plants and groups of Olearia bullata in the PIA.

Summary of existing information

While rare within the Dunedin City boundary, *Olearia bullata* is not considered At Risk and is frequent in the Macraes area which is towards the eastern edge of its mainly south-eastern South Island distribution. At many sites within its range large numbers of plants are present, and it is one of few native *Olearia* shrubs that are capable of regeneration in pastoral areas.

The ecological importance of the population of this species within the PIA is categorised as **low** (a more appropriate value⁷ than 'moderate' using Table 5 of EIANZ guidelines) on the basis of its:

1) Rarity within the Dunedin City boundary.

Page 55 of 125 ERA Ecology NZ Ltd

⁷ While this species is rare within the Dunedin City boundaries, it is not a nationally rare species or a rare species in the Macraes E.D. Therefore its importance should be lower than species that are nationally rare.

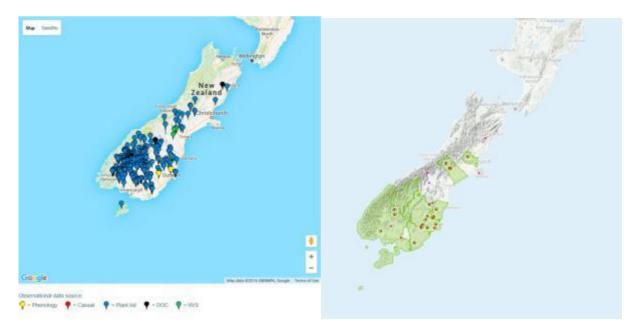


Figure A. Distribution of *Olearia bullata* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

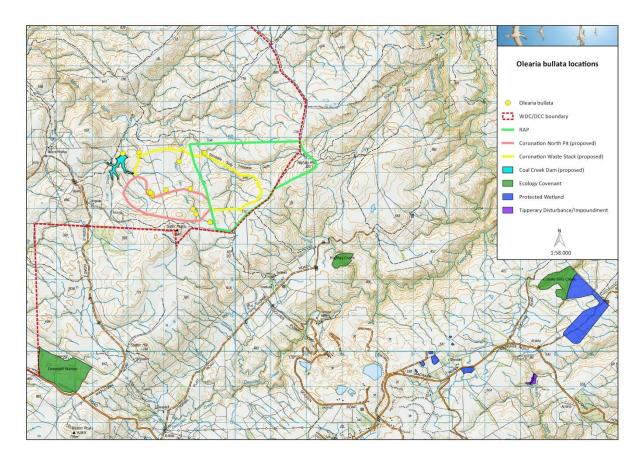


Figure B. Distribution of *Olearia bullata* within the PIA and the wider OceanaGold project area (NB: Distribution outside the Dunedin City boundary is not mapped).

Page 56 of 125 ERA Ecology NZ Ltd

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Data sources used in this assessment:

NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=1045 accessed 5 February 2016.

Nature Watch http://naturewatch.org.nz/taxa/404261-Olearia-bullata accessed 5 February 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 57 of 125 ERA Ecology NZ Ltd

2. Chionochloa rubra subsp. cuprea Connor (Copper tussock, Poaceae).

Distribution within project

There are scattered plants to large groups of *Chionochloa rubra* subsp. *cuprea* in the PIA where some sites have a near continuous 1.5m tall canopy of this species, with or without *Carex secta*, extending over 30-50m of gully bottom.

Summary of existing information

While rare within the Dunedin City boundary, *Chionochloa rubra* subsp. *cuprea* is not considered At Risk and is frequent in the Macraes area, which is towards the eastern edge of its mainly southern South Island distribution. At many sites within its range, large numbers of plants are present although it is susceptible to wetland drainage, and sites at lower elevations where it forms an extensive canopy covering more than several hectares are now rare.

The ecological importance of the population of this species within the PIA is categorised as **low** (a more appropriate value⁸ than 'moderate' using Table 5 of EIANZ guidelines) on the basis of its:

- 1) Rarity within the Dunedin City boundary;
- 2) its role in creating habitat for other species, including the Threatened Ranunculus ternatifolius.

Page 58 of 125 ERA Ecology NZ Ltd

⁸ While this species is rare within the Dunedin City boundaries, it is not a nationally rare species or a rare species in the Macraes E.D. Therefore its importance should be lower than species that are nationally rare.

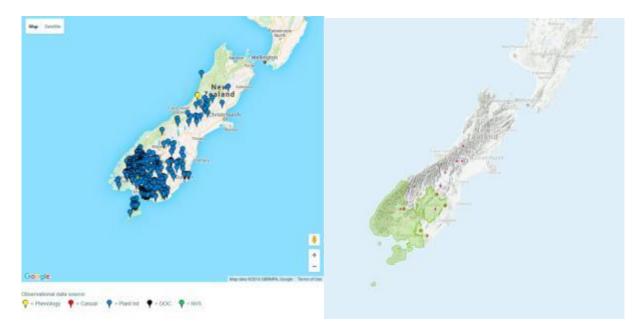


Figure A. Distribution of *Chionochloa rubra* subsp. *cuprea* in New Zealand from the NZ Plant Conservation Network (left) and Nature Watch (right) databases (see data sources). No guarantee is given as to the accuracy of the maps or the identification of the species.

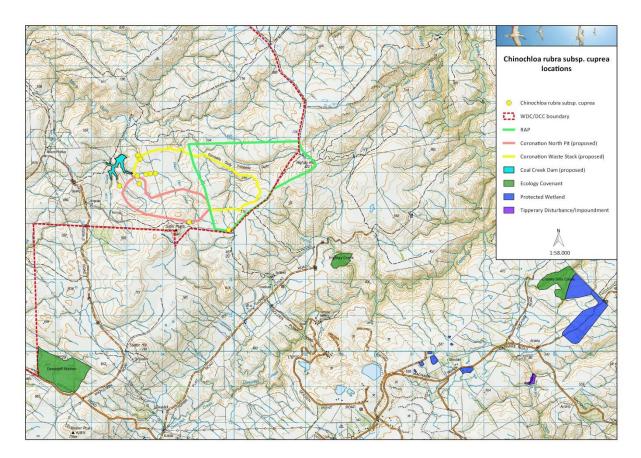


Figure B. Distribution of *Chionochloa rubra* subsp. *cuprea* within the PIA and the wider OceanaGold project area (NB: Only sites with larger patches forming a continuous canopy in the PIA are mapped).

Page 59 of 125 ERA Ecology NZ Ltd

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Data sources used in this assessment:

NZPCN http://www.nzpcn.org.nz/flora details.aspx?ID=1674 accessed 5 February 2016.

Nature Watch http://naturewatch.org.nz/taxa/412218-Chionochloa-rubra-cuprea accessed 5 February 2016.

OceanaGold file records

Dr M. Thorsen unpub. file notes.

Page 60 of 125 ERA Ecology NZ Ltd

5.3.5 Species of biogeographic interest

One species of biogeographic interest occur within the PIA: the cress Pachycladon cheesemanii.

1. Pachycladon cheesemanii Heenan et A. Mitch. (a dryland cress, Brassicaceae).

This species is part of a group of cress species that have been the focus of biogeographic studies. It has been mentioned in the following studies:

- Heenan, P.B; Mitchell, A.D; Koch, M. 2002. Molecular systematics of the New Zealand *Pachycladon* (Brassicaceae) complex: generic circumscription and relationships to *Arabidopsis* sens. lat. and *Arabis* sens. lat. New Zealand Journal of Botany 40: 543-562.
- Mitchell, A.D; Heenan, P.B. 2002. Genetic variation within the *Pachycladon* (Brassicaceae) complex based on fluorescent AFLP data. Journal of the Royal Society of New Zealand 32: 427-443.
- Heenan, P.B; Mitchell, A.D. 2003. Phylogeny, biogeography and adaptive radiation of *Pachycladon* (Brassicaceae) in the mountains of South Island, New Zealand. Journal of Biogeography 30: 1737-1749.
- McBreen, K; Heenan, P.B. 2006. Phylogenetic relationships of *Pachycladon* (Brassicaceae) species based on three nuclear and two chloroplast DNA markers. New Zealand Journal of Botany 44: 377-386.

5.3.6 Genetically or morphologically distinct forms

Two morphologically distinct plant forms are present within the PIA: a red-fruited narrow-leaved form of *Coprosma dumosa* and a brown-leaved cliff dwelling form of *Carex testacea*.

1. Red-fruited narrow-leaved form of Coprosma dumosa (a divaricating shrub, Rubiaceae).

The red-fruited narrow-leaved form of *C. dumosa* is present as a small grove of 5-6 plants growing within the PIA intermixed with *Coprosma propinqua* on a toe slope. This entity is morphologically distinct from the normal range of forms within *Coprosma dumosa* (pers. obs.), particularly in the bright red non-translucent fruit and narrow, acute-tipped leaves. It also has slightly decurved branches (a feature shared with the similar *Coprosma decurva* Heads, but which otherwise differs in the glabrous petiole and obtuse leaf tip). It is illustrated without comment in the Coprosma key and no mention was made of this variation by Jane (2005). The wider distribution of this entity is not known. This entity is probably best viewed as a morphologically distinct form within *Coprosma dumosa* (Cheeseman) G.T.Jane, pending further investigation.

Page 61 of 125 ERA Ecology NZ Ltd

OceanaGold - Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment - FINAL

Data sources used in this assessment:

Jane, G.T. 2005. An examination of *Coprosma ciliata* and *C. parviflora* complex. New Zealand Journal of Botany 43: 735-752.

Glenny, D; Cruickshank, J. 2011. Taxonomic notes on the New Zealand flora: *Coprosma dumosa* and *C. tayloriae*, are there two species? New Zealand Journal of Botany 49: 481-488.

Landcare Research. Coprosma Key

http://resources.landcareresearch.co.nz/interactivekeys/CoprosmaKey/ accessed 19/4/16

2. Carex testacea (trip-me-up grass, Cyperaceae).

A distinctive form of *Carex testacea* was noted at one site on one bluff in the PIA. This plant has congested spikes and membranous glumes that are longer than the utricle and a lax growth habit. Plants with a similar appearance to this are occasionally encountered in the area (the nearest other known record is Tipperary Creek). At least two other distinctive forms of *Carex testacea* are present in the Macraes area: an orange-leaved erect form growing on the margins of wetlands and a more 'usual' form of *Carex testacea* with green leaves and spaced spikes. *Carex testacea* s.l. is morphologically variable and the taxonomic status of the morphological forms currently identified as this species requires further investigation. In the meantime, this plant is treated as a morphologically distinct form, pending further investigation.

Page 62 of 125 ERA Ecology NZ Ltd

5.4 Avifauna Ecological Features

5.4.1 Avifauna communities

Eleven bird species have been recorded from the Coal Creek and Coronation North area, five of which are indigenous: pipit, harrier hawk, grey warbler, paradise shelduck and spur-winged plover, and six of which are exotic: skylark, chaffinch, redpoll, house sparrow and song thrush.

Only harrier was observed in the PIA, on one occasion. It is assumed that they regularly use the area for hunting and feeding, but are unlikely to be breeding there. The other species are likely to occasionally visit the area and it is possible that one or two pairs of grey warbler and song thrush breed within the PIA.

5.4.2 *Ecological function*

Of the eleven bird species recorded from within the Coal Creek and Coronation North area, six are exotic species. Four of these: skylark, chaffinch, redpoll and house sparrow are considered of little positive ecological significance, being insectivores or seed eaters which are likely competing with native species. The song thrush has some ecological significance due to its role in dispersing fruit of native shrubs.

The five indigenous species: pipit, harrier hawk, grey warbler, paradise shelduck and spur-winged plover, are all likely to be playing a minor ecological role within the PIA. Pipits are mainly insectivores, but also disperse fruit of native plants (Thorsen et al. 2011). Harrier hawks play a role in regulating rabbit density and behaviour in the area, but at the density encountered in the PIA, this is likely to be only a minor role. Grey warblers are predominantly insectivorous, and play a role in regulating tree-dwelling invertebrate numbers. Paradise shelduck and other waterfowl would influence the stature and composition of the wetland plant communities created by the dam. Spur-winged plovers are omnivorous, mainly feeding on plant material but also some animal material (Heather and Robertson 2000). They are a recent natural arrival to New Zealand, and their ecological function here is not known.

5.4.3 *Species diversity*

Dryland Central Otago is depauperate in bird species due to its aridity and lack of forest and wetland habitats. The five indigenous and six exotic bird species observed within the Coal Creek and Coronation North area is the normal diversity expected for this site.

5.4.4 Threatened, At Risk, or rare bird species

One of the five indigenous bird species is classified as At Risk: pipit.

Page 63 of 125 ERA Ecology NZ Ltd

1. Anthus novaeseelandiae Gmelin subsp. novaeseelandiae (pipit, Motacillidae).

Pipits are currently classified as Declining on the basis of a >100,000 population that is predicted to decline by 10-70% (Robertson et al. 2012). This decline is mainly attributed to conversion of rough grasslands (particularly short tussock grassland) to pasture, and predation (Heather and Robertson 2000, http://nzbirdsonline.org.nz/species/new-zealand-pipit accessed 16/2/16). Within the Macraes area pipit are widespread, particularly in rough low grassland, although population density varies greatly from site to site. Pipits are thought to be occasional visitors to the PIA.

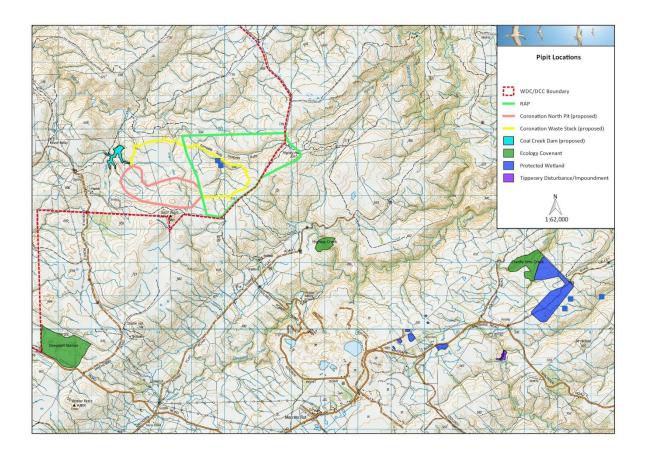


Figure 6. Locations where pipit were recorded in the Macraes area. Records at Deepdell Covenant are not shown.

5.4.5 Species of biogeographic interest

No bird species that are at their distribution limits or of other biogeographic interest were found within the PIA.

Page 64 of 125 ERA Ecology NZ Ltd

5.4.6 *Genetically or morphologically distinct forms*

No bird species within the PIA are thought to be of genetically or morphologically distinct forms.

5.4.7 Importance overall of avifauna

The ecological importance of the birds within the PIA is categorised as **low** on the basis of:

- 1) The occasional presence of one At Risk species;
- 2) minor role in ecosystem function;
- 3) low species diversity and abundance.

Page 65 of 125 ERA Ecology NZ Ltd

5.5 Herpetofauna Ecological Features

5.5.1 Herpetofauna communities

Three reptile and one amphibian species were recorded in and adjacent to the PIA (Figure 7): the skinks *Oligosoma maccanni* (clade 4 genotype), *Oligosoma polychroma* (clade 5 genotype), the gecko *Woodworthia* "Otago large" and the exotic whistling frog *Litoria ewingii*.

The McCann's skink *O. maccanni* (clade 4 genotype) is present in reasonable numbers (106 sightings over 12 person hours: 8.8 sightings hr⁻¹) throughout all vegetation communities, but it is absent from the majority of the exotic grassland. It is commoner in some areas such as rocky sites and areas near good cover from vegetation.

The southern grass skink *Oligosoma polychroma* (clade 5 form) is present infrequently (16 sightings over 12 person hours: 1.3 sightings hr⁻¹) in the more vegetated areas.

The korero gecko *Woodworthia* "Otago large" was noted 95 times in at several rock outcrops in the area including the PIA. Eight individuals were recorded over 2 hours (4 individuals hr⁻¹) within the PIA during the night survey, all high on the larger bluffs. It is likely to be common at only a few sites, but small groups or individuals are possibly present in many of the rock outcrops.

At least one whistling frog was heard during the night survey at one site within the PIA. This species is increasingly widespread in the South Island and southern North Island (http://www.nzfrogs.org/NZ+Frogs/Introduced+frogs.html accessed 6/2/16).

It can sometimes be difficult to detect all reptile species during a survey, and other species of reptile are known from the vicinity. Both grand skink *Oligosoma grande* and Otago skink *Oligosoma otagense* have been recorded in 1992 from c. 2.5km north of the PIA (Figure 7), but were not seen in or near the PIA during this survey (the original sites were not resurveyed as they occur outside the PIA). As they have not been detected within the PIA during the 1990's survey and these surveys, it is considered highly unlikely that these two species are present within the PIA. Green skinks *Oligosoma chloronoton* were present to the east of the Coronation Project Area in the 1960's (Whitaker 1986), but there have been no recent records of this species from anywhere within the OceanaGold operational area, even during a ten day species-specific survey in 2015. It is considered unlikely that this species is present within the PIA. Finally, cryptic slinks *Oligosoma inconspicuum* inhabit some gully-bottom habitats in the area. No cryptic skinks were detected during this survey, but it is possible that a small number of individuals may be present within the PIA.

Page 66 of 125 ERA Ecology NZ Ltd

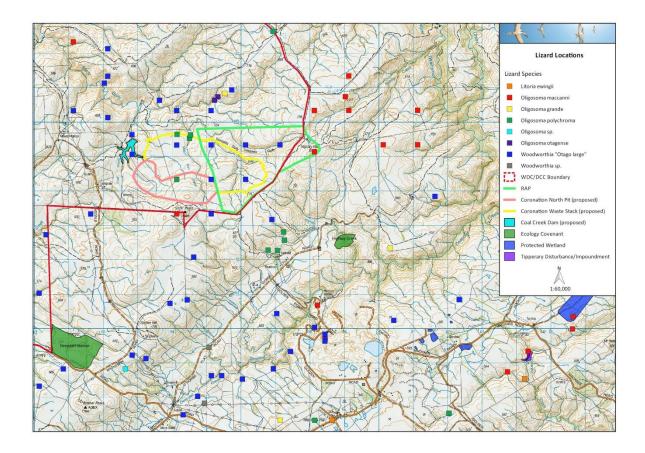


Figure 7. Records of lizard species in and around the PIA.

5.5.2 *Ecological function*

The three reptile species recorded in the PIA: the skinks *Oligosoma maccanni* (clade 4 genotype), *Oligosoma polychroma* (clade 5 genotype) and gecko *Woodworthia* "Otago large" play an ecological role in regulating invertebrate numbers and in dispersing the fruit of native plants. They are also prey items of native birds such as falcon (not known from PIA). The ecological function of the exotic frog *Litoria ewingii* is not known. In this instance, and at this density, their ecological role is considered minor.

5.5.1 Species diversity

Three reptile and one amphibian species is a low diversity in relation to other sites nearby, where four to eight species are regularly recorded.

Page 67 of 125 ERA Ecology NZ Ltd

5.5.1 Threatened, At Risk, or rare reptile species

Two of the reptile species known within the PIA are currently classified as At Risk: the skink *Oligosoma* polychroma (clade 5 genotype) and the gecko *Woodworthia* "Otago large".

1. Oligosoma polychroma (Patterson & Daugherty 1990) (clade 5 genotype) (southern grass skink, Scincidae).

Southern grass skinks are currently classified as Declining with the qualifier Partial Decline on the basis of its population estimated to occupy >10,000 (100km²) with a predicted decline of 10-70% (Hitchmough et al. 2013). Within the wider Macraes area this species is frequently encountered at many sites and most suitable habitat is occupied. Nearby, a large lizard conservation programme run by DOC is benefitting this species (and others). Within the PIA this species has a local distribution mainly in lower gully areas.

2. Woodworthia "Otago large" (korero gecko, Gekkonidae).

Korero geckos are currently classified as Declining with the qualifier Partial Decline on the basis of its population estimated to total >100,000 mature individuals with a predicted decline of 10-70% on mainland New Zealand (Hitchmough et al. 2013). Within the wider Macraes area this species is frequently encountered at many sites and most suitable habitat is occupied. Nearby, a large lizard conservation programme run by DOC is benefitting this species (and others). Korero geckos are likely to be present in many of the smaller rock outcrops that are scattered through the PIA.

5.5.1 Species of biogeographic interest

No reptile species that are at their distribution limits or of other biogeographic interest were recorded within the PIA.

5.5.1 Genetically or morphologically distinct forms

Genetically distinct genotypes of all three reptile species are present in the PIA: skinks *Oligosoma maccanni* (clade 4 genotype), *Oligosoma polychroma* (clade 5 genotype), and the gecko *Woodworthia* "Otago large".

Oligosoma polychroma (clade 5 genotype) (Liggins et al. 2008) and Oligosoma maccanni (clade 4 genotype) (O'Neill et al. 2008) are members of populations that are genetically distinct from other populations of these species.

Page 68 of 125 ERA Ecology NZ Ltd

The gecko *Woodworthia* "Otago large" is an unnamed entity within the *Woodworthia* genus that contains several other unnamed entities that were previously classified together as *Hoplodactylus maculatus* (Hitchmough 1997, Jewell 2008, Nielsen et al. 2011). The population that occurs at Macraes is thought to represent a distinctive eastern form of this unnamed entity (Jewell 2008).

All three of these genetically distinct populations are widespread in the area. The eastern form of *Woodworthia* "Otago large" occurs at multiples sites between the Waitaki and Clutha Rivers inland to the Rock and Pillar Range (Jewell 2008). The Clade 5 genotype of *Oligosoma polychroma* is known to occur between Banks Peninsula, Mackenzie Basin, Central Otago, Southland and Stewart Island (Liggins et al. 2008). The Clade 4 genotype of *Oligosoma maccanni* is known from south of the Waitaki River through Central Otago east of the Dunstan Mountains to northern Southland (O'Neill et al. 2008).

5.5.2 Importance overall of herpetofauna

The ecological importance of the lizard populations within the PIA is categorised as **Moderate** on the basis of:

- 1) The presence of two At Risk species;
- 2) the presence of genetically distinct lineages (that also occur at multiple sites outside the PIA);
- 3) the role they are likely to be playing in ecosystem function;
- 4) low species diversity and abundance.

Page 69 of 125 ERA Ecology NZ Ltd

5.6 Summary Table of Ecological Features

	Feature	Value	Importance
Vegetation & Sites	Communities	5 indigenous	Very high
	Community representativeness	High	
	Community distinctiveness	None	
	Community ecological integrity	Moderate	
	Community rarity	High	
	Ecological function and services	Moderate	
	Botanical diversity	High	
	Threatened land environments	3	
	National priorities for Conservation	-	Very high
	Historically rare ecosystems	-	
	Wetlands of National Importance or Ramsar Site	-	
	Significant habitats under Regional Plan	Yes	
	Significant habitats under District Plans	Yes?	
	Sites recommended for protection	-	
	Threatened plant species	2	
	At Risk plant species	6	Very high
	Data Deficient plant species	1	
	Rare plant species	4	
	Species of biogeographic interest	1	
	Genetically or morphologically distinct species	2	
Avifauna	Ecological function	Low	Low
	Diversity	5 indigenous, 6 exotic species	
	At Risk species	1	
	Species of biogeographic interest	-	
	Genetically or morphologically distinct species	-	
Herpetofauna	Ecological function	Moderate	– – Moderate
	Diversity	3 indigenous, 1 exotic	
	At Risk species	2	
	Species of biogeographic interest	-	
	Genetically or morphologically distinct species	3	

Page 70 of 125 ERA Ecology NZ Ltd

6 Project Impact on Biodiversity Features

6.1 Impact on Vegetation Communities

Five vegetation communities are identified within the PIA. Overall, the vegetation communities present within the PIA are assessed as being of **very high** ecological importance. The communities are of high representation, diversity and moderate integrity and ecosystems service importance. There is one rare vegetation community present and there are three Threatened Level IV land environments that are overlain by some natural vegetation. The remainder of the natural vegetation types are significant under the ORC Regional Plan.

The effects of the project will result in the loss of all vegetation communities within the PIA. This will reduce the extent of these vegetation communities in the local area.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the vegetation communities.

The magnitude of the project's impact on the area's vegetation communities at a local scale is assessed as **high**, and at a national level as **moderate**.

The overall degree of the project's effect on these communities is **moderate**.

The confidence of this assessment is **moderate-low**, as the majority of the area surrounding the PIA has not been closely explored. Further, it is difficult to discriminate between vegetation communities using aerial photography, which makes it difficult to assess their distribution at a local scale. Lastly, vegetation communities in this area often interdigitate and intergrade, making it difficult to accurately determine their classification and extent.

Page 71 of 125 ERA Ecology NZ Ltd

6.2 Threatened, At Risk, or Rare Plant Species

Eleven plant species that occur within the PIA are either currently classified as Threatened, At Risk or Data Deficient (Townsend et al. 2007, de Lange et al. 2013), or are listed as 'Threatened Plants' in Appendix 16A of the DCC District Plan, or are thought to be rare in the Macraes E.D. based on the author's observations.

6.2.1 Nationally Vulnerable species

1. Pachycladon cheesemanii Heenan et A. Mitch. (a dryland cress, Brassicaceae).

Two plants of Pachycladon cheesemanii are present in an overhang in one bluff within the PIA.

Effect of construction of dam escarpment

Nil effect as this species does not occur within this zone.

Effect of water inundation

This will cause the death the two plants.

Effect of pond run-down

Nil effect as this species does not occur in this type of habitat.

Effect of changes in weed populations

Negligible risk for this species as its shaded rock outcrop habitat is not vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Page 72 of 125 ERA Ecology NZ Ltd

Effects of dust

Nil effect as the rock overhang habitat of this species naturally protects it from dust-fall.

Effects of accidental fire

Nil to minor effect as the habitat of this species within the PIA is within a natural fire refugia, and it is considered unlikely that heat levels would reach a level within this habitat sufficient to effect plant health.

The result of these project effects will be the loss of the species from the site. There is some risk of a reduction in the longer-term viability of the species in a local context, both through a decrease in total population size, and loss of sites that may have importance in maintaining what is likely to be a fragmented metapopulation of the species in the area. This could have a minor effect on the biogeographic pattern of this species.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **high**, and at a national level as **moderate-low**.

The overall degree of the project's effect on this species is moderate.

The confidence of this assessment is **low**, as this is the first record of the species in the Macraes E.D., and it is likely under-recorded as a result of its inconspicuous nature and relatively inaccessible cliff habitat. Further, the majority of the area surrounding the PIA has not been closely explored, and all available records from the area are the result of opportunistic (rather than structured) surveys, therefore the distribution described here is likely to be a subset of a wider distribution.

Page 73 of 125 ERA Ecology NZ Ltd

2	Senecio	dunedinensis	Belcher (a	groundsel dais	v. Asteraceae).	
---	---------	--------------	------------	----------------	-----------------	--

Single plants of Senecio dunedinensis are present on ledges at two sites within the PIA.

Effect of construction of dam escarpment

Construction of the dam escarpment is likely to cause the death of one plant through being buried in dam material.

Effect of water inundation

This will cause the death of one plant.

Effect of pond run-down

Nil effect as this species does not occur in this type of habitat.

Effect of changes in weed populations

Negligible risk for this species as its shaded rock outcrop habitat is not vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Nil effect as the rock overhang habitat of this species naturally protects it from dust-fall.

Effects of accidental fire

Nil to minor effect as the habitat of this species within the PIA is within a natural fire refugia, and it is considered unlikely that heat levels would reach a level within this habitat sufficient to effect plant health.

Page 74 of 125 ERA Ecology NZ Ltd

The result of these project effects will be the loss of the species from the site. There is some risk of a reduction in the longer-term viability of the species in a local context, both through a decrease in total population size, and loss of sites that may have importance in maintaining what is likely to be a fragmented metapopulation of the species in the area.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **high**, and at a national level as **moderate-low**.

The overall degree of the project's effect on this species is **moderate**.

The confidence of this assessment is **low**, as this species is likely under-recorded as a result of its similarity to other *Senecio* species (particularly *Senecio quadridentatus* which is common in the area) and relatively inaccessible cliff habitat. Further, the majority of the area surrounding the PIA has not been closely explored, and all available records from the area are the result of opportunistic (rather than structured) surveys, therefore the distribution described here is likely to be a subset of a wider distribution.

Page 75 of 125 ERA Ecology NZ Ltd

6.2.2 At Risk species

Six At Risk plant species are known to occur within the PIA: two species that are classified as Declining and four species classified as Naturally Uncommon.

1. Carmichaelia crassicaulis Hook.f. subsp. crassicaulis (coral broom, Fabaceae).

This thick-stemmed broom was recorded at twelve sites within and four sites near the PIA comprising 2 - 50 individuals at each site.

Effect of construction of dam escarpment

Construction of the dam escarpment is likely to cause the death of several plants through being buried in dam material.

Effect of water inundation

This will cause the death of approximately 90 plants.

Effect of pond run-down

Nil effect as this species does not occur in this type of habitat.

Effect of changes in weed populations

Slight risk for this species as its dry rocky habitat is not particularly vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as this species occurs in habitats that are naturally dusty, such as beside gravel roads.

Page 76 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil to minor effect as the habitat of this species within the PIA is a natural fire refugia, and it is considered unlikely that heat levels would reach a level within this habitat sufficient to effect plant health.

The result of these project effects will be the loss of the bulk of the local population from the site which may also reduce longer-term viability of the species in a local context, both through a decrease in total population size, and loss of a site that may have importance in maintaining what is likely to be a fragmented metapopulation of the species in the area.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **high**, and at a national level as **moderate**.

The overall degree of the project's effect on this species is **high**⁹.

The confidence of this assessment is **moderate**, as the majority of the area surrounding the PIA has not been closely explored, and all available records from the area are the result of opportunistic (rather than structured) surveys, therefore the distribution described here is likely to be a subset of a wider distribution. This species is very distinctive and unlikely to be mis-recorded.

Page 77 of 125 ERA Ecology NZ Ltd

⁹ 'High' would seem a more appropriate product, and more in keeping with the progression from 'negligible' to 'very high' as ecological value and magnitude of effect increases in the rest of the table.

2. Coprosma intertexta G.Simpson (a narrow-leaved divaricating coprosma, Rubiaceae).

This reddish divaricating small-leaved Coprosma was recorded at 6 sites within the PIA and one adjacent site upstream comprise 1 individual to groups covering 20m x 10m at each site.

Effect of construction of dam escarpment

Construction of the dam escarpment is likely to cause the death of several plants through being buried in dam material.

Effect of water inundation

This will cause the death of approximately 30-50 plants.

Effect of pond run-down

Nil effect as this species does not occur in this type of habitat.

Effect of changes in weed populations

Moderate risk for this species as its dry rocky habitat is not particularly vulnerable to weed invasion, except for woody weeds.

Effects of displacement of resident animals

Moderate effect for this species as it is dependent on birds for fruit dispersal.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as this species occurs in habitats that are naturally dusty, such as beside gravel roads.

Page 78 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil to minor effect as the habitat of this species within the PIA is a natural fire refugia, and it is considered unlikely that heat levels would reach a level within this habitat sufficient to effect plant health.

The result of these project effects will be the loss of much of the population from the site which may also reduce longer-term viability of the species in a local context, both through a decrease in total population size, and loss of a site that may have importance in maintaining what is likely to be a fragmented metapopulation of the species in the area.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **high**, and at a national level as **moderate**.

The overall degree of the project's effect on this species is high.

The confidence of this assessment is **low**, as the majority of the area surrounding the PIA has not been closely explored, and all available records from the area are the result of opportunistic (rather than structured) surveys, therefore the distribution described here is likely to be a subset of a wider distribution. This species is similar to *Coprosma rugosa* which also occurs in the area and therefore is also likely to be mis-recorded.

Page 79 of 125 ERA Ecology NZ Ltd

3. Celmisia hookeri Cockayne (Hooker's mountain daisy, Asteraceae).

This cliff daisy was recorded as scattered plants and large groups of plants inhabiting the larger schist rock outcrops and bluffs in the PIA and surrounding area.

Effect of construction of dam escarpment

Construction of the dam escarpment is likely to cause the death of several large groups totally c. 200 plants through being buried in dam material.

Effect of water inundation

This will cause the death of other large groups of 20-100 plants.

Effect of pond run-down

Nil effect as this species does not occur in this type of habitat.

Effect of changes in weed populations

Slight risk for this species as its rocky habitat is not particularly vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor to moderate effect as the rock habitat of this species naturally protects it from dust-fall, but plants in higher dust-fall areas may be affected, though it would be unlikely to cause the death of plants.

Page 80 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil to minor effect as the habitat of this species within the PIA is a natural fire refugia, and it is considered unlikely that heat levels would reach a level within this habitat sufficient to effect plant health.

The result of these project effects will be the loss of the species from within the PIA. The loss of the sites within the PIA will result in an estimated <1% reduction in the size of the national population.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **moderate**, and at a national level as **moderate**.

The overall degree of the project's effect on this species is **moderate** (a more appropriate value than 'low' produced using Table 12 of EIANZ guidelines).

The confidence of this assessment is **moderate-high**, as the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys. Therefore the distribution described here is likely to be a subset of a wider distribution. This species can be confused with other *Celmisia* species outside its known range, and therefore localities outside of north-eastern Otago and northern Southland are likely to be misidentifications.

Page 81 of 125 ERA Ecology NZ Ltd

¹⁰ The intersection of a 'moderate-high' ecological value and 'moderate' magnitude effect produces a 'high' or 'low' level of effect in Table 12. 'Moderate' would seem a more appropriate product, and more in keeping with the progression from 'negligible' to 'very high' as ecological value and magnitude of effect increases in the rest of the table.

This sprawling needle-leaved shrub was recorded as scattered plants and larger groups on the larger schist rock outcrops and bluffs in the PIA.

Effect of construction of dam escarpment

Construction of the dam escarpment is likely to cause the death of several plants through being buried in dam material.

Effect of water inundation

This may cause the death of approximately 30-50 plants, depending on maximum water level.

Effect of pond run-down

Nil effect as this species does not occur in this type of habitat.

Effect of changes in weed populations

Slight risk for this species as its dry rocky habitat is not particularly vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as the needle-like leaves of this species is not likely to be coated with thick layers of dust.

Page 82 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil to minor effect as the habitat of this species within the PIA is a natural fire refugia, and it is considered unlikely that heat levels would reach a level within this habitat sufficient to effect plant health.

The result of these project effects will be the loss of the bulk of the population from the site which may also reduce longer-term viability of the species in a local context, both through a decrease in total population size, and loss of a site that may have importance in maintaining what is likely to be a fragmented metapopulation of the species in the area.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **moderate**, and at a national level as **low**.

The overall degree of the project's effect on this species is **low**.

The confidence of this assessment is **moderate**, as the majority of the area surrounding the PIA has not been closely explored, and all available records from the area are the result of opportunistic (rather than structured) surveys, therefore the distribution described here is likely to be a subset of a wider distribution. This species is similar to *Dracophyllum rosmarinifolium* and is likely to be misrecorded.

Page 83 of 125 ERA Ecology NZ Ltd

5. Cardamine bilobata Kirk (a native bittercress, Brassicaceae).

This small herb was recorded as scattered individuals totalling c. 20 plants on two of the larger schist rock bluffs in the PIA. It is probable more plants are present in the higher areas of the bluffs.

Effect of construction of dam escarpment

Construction of the dam escarpment is likely to cause the death of at least 5 plants through being buried in dam material.

Effect of water inundation

This will cause the death of the remaining c. 15 plants.

Effect of pond run-down

Nil effect as this species does not occur in this type of habitat.

Effect of changes in weed populations

Slight risk for this species as its rocky habitat is not particularly vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor to moderate effect as the rock habitat of this species naturally protects it from dust-fall, but plants in higher dust-fall areas may be effected by dust, though it would be unlikely to cause the death of plants.

Page 84 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil to minor effect as the habitat of this species within the PIA is a natural fire refugia, and it is considered unlikely that heat levels would reach a level within this habitat sufficient to effect plant health.

The result of these project effects will be the loss of the species from within the PIA. This will result in the loss of the only known population of this form of the species in the Central Otago area. However, this form of the species appears to be more common in higher rainfall areas closer to the Southern Alps, but even there few populations are currently known. It is likely to be very palatable to exotic animals.

Therefore, the impact of this project is assessed as having both an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **very high**, and at a national level as **high**.

The overall degree of the project's effect on this species is high.

The confidence of this assessment is **very low**, as this is the first record of this species (in the strictest sense) from the Central Otago area. Further, the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys. Therefore the distribution described here is likely to be a subset of a wider distribution. There is also considerable uncertainty surrounding the taxonomy of this species.

Page 85 of 125 ERA Ecology NZ Ltd

6. Lagenophora barkeri Kirk (a wetland daisy, Asteraceae).

This wetland daisy was recorded at one site in the PIA, in a wetland at the base of a bluff.

Effect of construction of dam escarpment

Nil effect as the species does not occur in this zone.

Effect of water inundation

This will cause the death of the one patch of this species in the PIA.

Effect of pond run-down

Probably nil effect as this species is unlikely to colonise this habitat.

Effect of changes in weed populations

Slight risk for this species as its shaded wetland habitat is not particularly vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor to moderate effect as the rock base habitat of this species naturally protects it from dust-fall, but plants in higher dust-fall areas may be effected by dust, though it would be unlikely to cause the death of plants.

Effects of accidental fire

Nil effect as the habitat of this species within the PIA is naturally wet.

Page 86 of 125 ERA Ecology NZ Ltd

The result of these project effects will be the loss of the species from one site within the PIA. The impact on the species at a local or national scale is difficult to assess, as the distribution of this species is poorly known, but is thought likely to occur at multiple locations, including many in protected areas throughout its range. If this assumption is correct, then the loss of the site in the PIA is unlikely to majorly impact the longer-term security of the species locally or nationally.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **moderate**, and at a national level as **low**.

The overall degree of the project's effect on this species is low.

The confidence of this assessment is **low**, as the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys. Therefore the distribution described here is likely to be a subset of a wider distribution. This species is very easily confused with the very similar *L. petiolata* and *L. montana*, both of which occur in similar habitats nearby, and populations that are one of these three species are not infrequent in the Macraes area, although closer examination of plants from some sites have usually identified them as *L. petiolata*.

Page 87 of 125 ERA Ecology NZ Ltd

6.2.3 Data Deficient species

1. Epilobium insulare Hausskn. (a wetland willowherb, Onagraceae).

This wetland willowherb was recorded as small populations of 20-30 plants at three sites in the PIA, and several groups in areas immediately adjacent to the PIA.

Effect of construction of dam escarpment

Nil effect as the species does not occur in this zone.

Effect of water inundation

This will cause the loss of the three sites of this species in the PIA.

Effect of pond run-down

Probably nil effect as this species is unlikely to colonise this habitat.

Effect of changes in weed populations

Moderate risk for this species as its wetland habitat is vulnerable to weed invasion, but it does persist at sites together with exotic species.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as the wetland habitat and low stature of this species naturally washes off dust-fall.

Page 88 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil effect as the habitat of this species within the PIA is naturally wet.

The result of these project effects will be the loss of the species from within the PIA. This will cause some loss of small populations from the local area. The impact on the species at a local or national scale is difficult to assess as the distribution of this species is poorly known, but is thought likely to occur at multiple locations, including many in protected areas throughout its range. If this assumption is correct, then the loss of the two sites in the PIA is unlikely to majorly impact the longer-term security of the species locally or nationally.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **moderate**, and at a national level as **low**.

The overall degree of the project's effect on this species is **low**.

The confidence of this assessment is **moderate-low**. The distribution of this species is now much better known than when it was classified as Data Deficient. However, *Epilobium* species are notoriously difficult to identify, and this, together with its stature as a small herb, mean it is likely to be under-recorded.

Page 89 of 125 ERA Ecology NZ Ltd

6.2.4 Rare species

6.2.4.1 Species uncommon in Ecological District

1. Carex kaloides Petrie (a wetland sedge, Cyperaceae).

This sedge was recorded in gully bottoms at several sites in the PIA. Population size varies between patches of $1m^2$ to patches $5m \times 3m$ in size.

Effect of construction of dam escarpment

Nil effect as the species does not occur in this zone.

Effect of water inundation

This will cause the loss of the three sites of this species in the PIA.

Effect of pond run-down

Probably nil effect as this species is unlikely to colonise this habitat.

Effect of changes in weed populations

Moderate risk for this species as its wetland habitat is vulnerable to weed invasion, but it does persist at sites together with exotic species.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Page 90 of 125 ERA Ecology NZ Ltd

Effects of dust

Minor effect as the wetland habitat and low stature of this species naturally washes off dust-fall.

Effects of accidental fire

Nil effect as the habitat of this species within the PIA is naturally wet.

The result of these project effects will be the loss of the species from within the PIA. This will cause a reduction in the number of populations in the local area. The wider effect of this impact on the species at a national scale is thought to be negligible, as this species occurs at multiple locations, including in protected areas throughout its range and at sites that are heavily grazed.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **high**, and at a national level as **very low**.

The overall degree of the project's effect on this species is **very low**.

The confidence of this assessment is **low**, as the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys. Therefore the distribution described here is likely to be a subset of a wider distribution. In this area some patches of *Carex kaloides* are cryptic and difficult to detect within surrounding *Chionochloa rubra* subsp. *cuprea* tussocks. Also, this species is only recently known from the area, being first recorded in 2013, and as such its wider distribution in the area is unknown.

Page 91 of 125 ERA Ecology NZ Ltd

2.	Veronica	rakaiensis	I.B.Armstr.	la shrub hebe	, Plantaginaceae)
۷.	V CI OIIICU	IUNUICIISIS	J. D. A. 1113 U.	ta sili ab licbe	. I lantasinaccac <i>i</i>

Veronica rakaiensis was recorded from one large schist bluff in the PIA where there is a population of c. 100 plants.

Effect of construction of dam escarpment

Nil effect as the species does not occur in this zone.

Effect of water inundation

This will cause the loss of the one site of this species in the PIA.

Effect of pond run-down

Probably nil effect as this species is unlikely to colonise this habitat.

Effect of changes in weed populations

Moderate risk for this species as its bluff habitat is moderately vulnerable to weed invasion, but it does persist at sites together with other, non-woody, exotic species.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Moderate effect as the coriaceous leaves of this species should be resistant to dust-fall.

Page 92 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil effect as the bluff habitat of this species is naturally resistant to fire.

The result of these project effects will be the loss of the species from within the PIA. This will cause a reduction in the number of populations in the local area. The wider effect of this impact on the species at a national scale is thought to be negligible as this species occurs at multiple locations, including in many protected areas throughout its range.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **moderate**, and at a national level as **negligible**.

The overall degree of the project's effect on this species is **very low**.

The confidence of this assessment is **moderate**, as the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys. Therefore the distribution described here is likely to be a subset of a wider distribution.

Page 93 of 125 ERA Ecology NZ Ltd

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as the small leathery leaves of this species are likely to be resistant to dust-fall.

Page 94 of 125 ERA Ecology NZ Ltd

Effects of accidental fire

Nil effect as the habitat of this species within the PIA is naturally wet.

Assessment of project impact

The result of these project effects will be the loss of the species from within the PIA. This will cause a small reduction in the number of populations in the local area. The wider effect of this impact on the species at a national scale is negligible, as this species occurs at multiple locations, including in many protected areas throughout its range.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **low** and at a national level as **negligible**.

The overall degree of the project's effect on this species is very low.

The confidence of this assessment is **high**, as although the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys, this species is frequently encountered in large numbers in the wider area.

Page 95 of 125 ERA Ecology NZ Ltd

2. Chionochloa rubra subsp. cuprea Connor (Copper tussock, Poaceae).

There are scattered plants to large groups of *Chionochloa rubra* subsp. *cuprea* in the PIA where some sites have a near continuous 1.5m tall canopy of this species, with or without *Carex secta*, extending over 30-50m of gully bottom.

Effect of construction of dam escarpment

Minor effect as few plants occur in this zone.

Effect of water inundation

This will cause the loss of the species in the PIA.

Effect of pond run-down

Probably nil effect as this species is unlikely to colonise this habitat.

Effect of changes in weed populations

Moderate risk for this species as its wetland habitat is vulnerable to weed invasion, but it does persist at sites together with exotic species due to its tall stature.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as the narrow coriaceous leaves of this species are likely to be resistant to dust-fall.

Effects of accidental fire

Minor effect as the habitat of this species within the PIA is naturally wet.

Page 96 of 125 ERA Ecology NZ Ltd

Assessment of project impact

The result of these project effects will be the loss of the species from within the PIA. This will reduce the extent of copper tussock wetland in the local area. The wider effect of this impact on the species at a national scale is negligible, as this species occurs at multiple locations, including in many protected areas throughout its range.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the species.

The magnitude of the project's impact on this species at a local scale is assessed as **moderate**, and at a national level as **negligible**.

The overall degree of the project's effect on this species is **very low**.

Confidence of assessment

The confidence of this assessment is **high**, as although the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys, this species is frequently encountered in the wider area.

Page 97 of 125 ERA Ecology NZ Ltd

6.2.1	Species of	f hioaeoarai	phic interest
0.2.1	Species of	Diogeogia	orne micerese

One species of biogeographic interest occur within the PIA: the cress Pachycladon cheesemanii.

1. Pachycladon cheesemanii Heenan et A. Mitch. (a dryland cress, Brassicaceae).

The effects of the project on this species are discussed in <u>Section 6.2.1</u>.

6.2.2 Genetically or morphologically distinct forms

Two morphologically distinct plant forms are present within the PIA: a red-fruited narrow-leaved form of *Coprosma dumosa* and a brown-leaved cliff dwelling form of *Carex testacea*.

1. Red-fruited narrow-leaved form of Coprosma dumosa (a divaricating shrub, Rubiaceae).

The red-fruited narrow-leaved form of *C. dumosa* is present as a small grove of 5-6 plants growing within the PIA.

Effect of construction of dam escarpment

Nil effect as this plant does not occur in this zone.

Effect of water inundation

This will cause the loss of the plant in the PIA.

Effect of pond run-down

Nil effect as this plant would not colonise this habitat.

Effect of changes in weed populations

Moderate risk for this plant as its habitat is vulnerable to weed invasion, but it does persist at the site together with some exotic species.

Page 98 of 125 ERA Ecology NZ Ltd

Effects of displacement of resident animals

Moderate effect for this plant as it is dependent on birds for fruit dispersal.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as the small coriaceous leaves of this plant are likely to be resistant to dust-fall.

Effects of accidental fire

Minor effect as the habitat of this plant within the PIA is apparently a fire refugia.

Assessment of project impact

The result of these project effects will be the loss of the plant from within the PIA. This will remove the only known occurrence of this plant within the E.D. The wider effect of this impact on the species at a national scale is unknown due to uncertainty surrounding its taxonomic validity, but it is apparently present in other localities.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the plant.

The magnitude of the project's impact on this plant at a local scale is assessed as **high**, and at a national level as **moderate**.

The overall degree of the project's effect on this plant is **moderate**.

Confidence of assessment

The confidence of this assessment is **very low**, due to the uncertainty of the taxonomic status of this entity, its similarity to other small-leaved *Coprosma* species, and that the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys.

Page 99 of 125 ERA Ecology NZ Ltd

2. Carex testacea (trip-me-up grass, Cyperaceae).

distinctive form of Care.	<i>testacea</i> was noted	at one site on o	ne bluff in the PIA.
---------------------------	---------------------------	------------------	----------------------

Effect of construction of dam escarpment

Nil effect as this plant does not occur in this zone.

Effect of water inundation

This will cause the loss of the one plant in the PIA.

Effect of pond run-down

Nil effect as this plant would not colonise this habitat.

Effect of changes in weed populations

Moderate risk for this plant as its habitat is vulnerable to weed invasion.

Effects of displacement of resident animals

Nil effect for this species as it is not dependent on any of the resident animal species that are likely to be displaced.

Effects of noise

Nil effect as plants are not susceptible to noise.

Effects of dust

Minor effect as the narrow coriaceous leaves of this plant are likely to be resistant to dust-fall.

Effects of accidental fire

Minor effect as the habitat of this plant within the PIA is apparently a fire refugia.

Page 100 of 125 ERA Ecology NZ Ltd

Assessment of project impact

The result of these project effects will be the loss of the one known plant from within the PIA. The wider effect of this impact on the plant at a national scale is unknown due to uncertainty surrounding its taxonomic validity, but it is apparently present in other localities.

Therefore, the impact of this project is assessed as having an **adverse**, **direct**, **permanent**, **irreversible**, **local impact** on the plant.

The magnitude of the project's impact on this plant at a local scale is assessed as **high**, and at a national level as **moderate**.

The overall degree of the project's effect on this plant is **moderate**.

Confidence of assessment

The confidence of this assessment is **very low**, due to the uncertainty of the taxonomic status of this entity, its similarity to other *Carex* species, and that the majority of the area surrounding the PIA has not been closely explored and all available records from the area are the result of opportunistic (rather than structured) surveys.

Page 101 of 125 ERA Ecology NZ Ltd

6.3 Impact on Avifauna Ecological Features

Eleven bird species were recorded from within the vicinity of the PIA, five of which are indigenous. The ecological importance of the birds within the PIA is categorised as **moderate-low** on the basis of the possible occasional presence of one At Risk species, the avifauna's role in ecosystem function and the low species diversity and abundance within the PIA.

Effect of construction of dam escarpment

Major effect on bird species that would use this zone through destroying habitat.

Effect of water inundation

This will displace all bird species that would use this area as a result of inundating their habitat. This will also create habitat that is likely to attract waterfowl species such as the endemic paradise shelduck *Tadorna variegata* (which is known to breed nearby), and the exotic mallard *Anas platyrhynchos* and Canada goose *Branta canadensis*. It is less likely that the endemic little pied shag *Phalacrocorax melanoleucos brevirostris*, indigenous white-faced heron *Egretta novaehollandiae*, indigenous black swan *Cygnus atratus*, indigenous (possibly endemic) Critically Endangered grey duck *Anas superciliosa* (but much more likely are hybrids between this species and mallard) or At Risk black shag *Phalacrocorax carbo* would be attracted to this pond.

Effect of pond run-down

Moderate effect as some of the waterfowl species that would be attracted to the pond would likely use this habitat also.

Effect of changes in weed populations

Minor to major effect as some weed species can form monocultures that are avoided by birds.

Effects of displacement of resident animals

This will be a temporary moderate effect, as birds resident within the PIA are likely to move into the surrounding area where they will compete for space and food with that area's residents. As the areas around the PIA are assumed to be at carrying capacity, this completion is likely to result in the mortality of a number of either resident birds or displaced birds, with a total mortality approaching the number of individuals that are displaced from the PIA.

Page 102 of 125 ERA Ecology NZ Ltd

Effects of noise

This will have a temporary minor effect on the bird populations surrounding the PIA, as most of the species appear to acclimate to regular disturbance. It is likely that harrier hawks will avoid hunting the nearby surrounding area and that paradise shelducks will not nest within sight during the construction phase.

Effects of dust

Negligible effect as dust-fall, when managed, is minimal at distance.

Effects of accidental fire

Minor to moderate effect depending on the timing of fire. If a fire was to occur during the nesting season then bird's nests would be at risk, particularly those of ground-nesting pipit.

The result of these project effects will be the displacement of bird individuals from within the PIA, with a temporary increase in competition with neighbouring resident birds leading to the mortality of some individuals. Longer term there is likely to be attraction of waterfowl species to the pond site. The result of this is some disruption of local bird populations, most of which are common on a national scale. The loss of a small area of habitat of the At Risk pipit is of minor importance on a national scale. Some of this effect could be reversed by decommissioning and emptying the pond.

Therefore, the impact of this project is assessed as having an adverse and positive, direct, permanent, partially-reversible, local impact on these species.

The magnitude of the project's impact on these species at a local scale is assessed as **moderate**, and at a national level as **negligible**.

The overall degree of the project's effect on these species is **very low**.

The confidence of this assessment is **moderate-low**, as the distribution and density of birds within the wider Macraes area is largely unknown.

Page 103 of 125 ERA Ecology NZ Ltd

6.4 Impact on Herpetofauna Ecological Features

Three reptile and one amphibian species were recorded in the PIA. The ecological importance of the herpetofauna populations within the PIA is categorised as **Moderate** on the basis of the presence of two At Risk species, the presence of genetically distinct lineages (that also occur at multiple sites outside the PIA), the role the herpetofauna is likely to be playing in ecosystem function, and the low species diversity within the PIA.

Effect of construction of dam escarpment

Moderate effect on lizard species caused by destruction of habitat and death of some individuals through being crushed in earthworks.

Effect of water inundation

This will displace all lizards from within the PIA by inundating their habitat. Most are expected to move to the perimeter of the pond where they would compete for space and food with that area's residents. As the areas around the PIA are assumed to be at carrying capacity, this competition is likely to result in the mortality of a number of either resident lizards or displaced lizards, with a total mortality approaching the number of individuals that are displaced from the PIA. The pond margin is likely to create ideal habitat for the exotic frog *Litoria ewingii* which is expected to increase in numbers in this area. The flow-on effect of this on other species is not known, but there would be increased predation on invertebrates. However, much of their diet is likely to be aquatic invertebrates that have colonised the new habitat.

Effect of pond run-down

Minor effect as the reptile species would not use this habitat. There is likely to be some use of this habitat by the exotic amphibian *Litoria ewingii*.

Effect of changes in weed populations

Minor to major effect as some weed species can form monocultures that are avoided by lizards.

Effects of displacement of resident animals

This will be a temporary moderate effect, as lizards resident within the PIA are likely to move into the surrounding area where they will compete for space and food with that area's residents. As the areas around the PIA are likely to be at carrying capacity, this completion is likely to result in the mortality of

Page 104 of 125 ERA Ecology NZ Ltd

a number of either resident lizards or displaced lizards, with a total mortality approaching the number of individuals that are displaced from the PIA.

Effects of noise

Negligible effect as lizards are not particularly disturbed by noise and the noise effect is only temporary.

Effects of dust

Negligible effect as dust-fall, when managed, is minimal at distance.

Effects of accidental fire

Minor to moderate effect, particularly on animals in grassland, and depending on the timing of fire.

Assessment of project impact

The result of these project effects will be the death of all reptile individuals from within the PIA and some short term disruption to reptile populations in the area immediately surrounding the project. As the populations within the PIA of these lizards are relatively small, it is assessed that the project will have a moderate effect on local lizard populations. As the lizard species concerned are widespread and often numerous in the wider area, the project is considered to have a minor impact on lizard populations at a national scale. Some of this effect could be reversed by decommissioning and emptying the pond.

Therefore, the impact of this project is assessed as having an **adverse and positive**, **direct**, **permanent**, **partially-reversible**, **local impact** on these species.

The magnitude of the project's impact on these species at a local scale is assessed as **moderate**, and at a national level as **moderate**.

The overall degree of the project's effect on these species is **moderate** (a more appropriate value than 'low' produced using Table 12 of EIANZ guidelines).

The confidence of this assessment is **moderate**, as although the distribution and density of reptiles to the south of the project area are among the best known in New Zealand, the area to the north and west of the project area is poorly known in regard to reptiles.

Page 105 of 125 ERA Ecology NZ Ltd

-

¹¹ The intersection of a 'moderate' ecological value and 'moderate' magnitude effect produces a 'low' level of effect in Table 12. 'Moderate' would seem a more appropriate product.

6.5 Summary of Project Impacts

	Feature	Ecological Importance	Local Impact	National Impact	Overall
	Communities	very high	high	moderate	moderate
es	Threatened plant species		high (2 species)	moderate-low (2 species)	moderate (2 species)
tion & Sites	At Risk plant species	yory high	moderate (3 species), high (2 species), very high (1 species)	low (2 species), moderate (3 species) high (1 species)	low (2 species), moderate (1 species), high (3 species)
Vegetation	Data Deficient plant species	very high	moderate (1 species)	low (1 species)	low (1 species)
>	Rare plant species		low (1 species), moderate (2 species), high (1 species)	negligible (3 species), very low (1 species),	very low (4 species)
Avifauna		moderate- low	moderate	negligible	very low
Herpetofauna mod		moderate	moderate	moderate	moderate

Page 106 of 125 ERA Ecology NZ Ltd

7 Ecological features in surrounding area

Several notable ecological features were noted in the area surrounding the PIA, including additional populations to those in the PIA of *Carmichaelia crassicaulis* subsp. *crassicaulis*, *Coprosma intertexta*, *Epilobium insulare* and *Carex kaloides*, as well as populations of the Nationally Vulnerable buttercup *Ranunculus ternatifolius*, Declining bidibid *Acaena buchananii*, Naturally Uncommon hookgrass *Carex subtilis* and rare scented tree daisy *Olearia odorata*. Avoiding these sites during planning project activities is recommended, particularly when identifying the site access route and borrow site.

Page 107 of 125 ERA Ecology NZ Ltd

8 References

- Bibby, C.J. 1997. Macraes Ecological District, summary report for Protected Natural Areas Programme.

 Department of Conservation, Dunedin.
- de Lange, P.J; Rolfe, J.R; Champion, P.D; Courtney, S.P; Heenan, P.B; Barkla, J.W; Cameron, E.K; Norton, D.A; Hitchmough, R.A. 2013. Conservation status of New Zealand indigenous vascular plants, 2012. New Zealand Threat Classification Series 3. Department of Conservation, Wellington.
- Department of Conservation & Ministry for the Environment. 2007. Protecting our places. Publication ME 799. Ministry for the Environment, Wellington.
- EcoGecko. 2015. Survey for green skink (*Oligosoma chloronoton* Clade 3b) on the Oceana Gold (NZ) Limited estate at Macraes Flat, Otago. Knox, C; Herbert, S; Bell, T. Unpub. report. EcoGecko Consultants Ltd.
- Forsyth, P.J. (Comp.). 2001. Geology of the Waitaki area. Institute of Geological and Nuclear Sciences 1: 250 000 Geological Map 19. Institute of Geological and Nuclear Sciences, Lower Hutt.
- Heather, B; Robertson, H. 2000. Field guide to the birds of New Zealand. Viking, Auckland.
- Hitchmough, R.A., 1997. A Systematic Revision of the New Zealand Gekkonidae. Unpub. Ph.D. Dissertation, Victoria University, Wellington. 370 pp.
- Hitchmough, R; Anderson, P; Barr, B; Monks, J; Lettink, M; Reardon, J; Tocher, M; Whitaker, T. 2013.

 Conservation status of New Zealand reptiles, 2012. New Zealand Threat Classification Series 2.

 Department of Conservation, Wellington.
- Holdaway, R.J; Wiser, S.K; Williams, P.A. 2012. Status assessment of New Zealand's naturally uncommon ecosystems. Conservation Biology 26: 619-629.
- Jewell, T. 2008. A photographic guide to reptiles and amphibians of New Zealand. New Holland Publishers (NZ) Ltd, Auckland. 143 pp.
- Johnson, P; Gerbeaux P. 2004. Wetland types in New Zealand. Department of Conservation, Wellington.
- Liggins, L; Chapple, D.G; Daugherty, C.H; Ritchie, P.A. 2008. A SINE of restricted gene flow across the alpine fault: phylogeography of the New Zealand common skink (*Oligosoma nigriplantare polychroma*). Molecular Ecology 17: 3668-3683.
- Mutch, A.R. 1963. Geological Map of New Zealand 1:250000, Sheet 23, Department of Scientific and Industrial Research, Wellington.
- McGlone, M.S; Mark, A.F; Bell, D. 1995. Late Pleistocene and Holocene vegetation history, Central Otago, South Island, New Zealand. Journal of the Royal Society of New Zealand 25: 1-22.
- McKellar, I.C. 1966. Geological Map of New Zealand 1:250000, Sheet 25, Department of Scientific and Industrial Research, Wellington.

Page 108 of 125 ERA Ecology NZ Ltd

- Nielsen, S.V; Bauer, A.M; Jackman, T.R; Hitchmough, R.A; Daugherty, C.H. 2011. New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Molecular Phylogenetics and Evolution 59: 1-22.
- O'Neill, S.B; Chapple, D.G; Daugherty, C.H; Ritchie, P.A. 2008. Phylogeography of two New Zealand lizards: McCann's skink (*Oligosoma maccanni*) and the brown skink (*O. zelandicum*). Molecular Phylogenetics and Evolution 48: 1168-1177.
- Robertson, H.A; Dowding, J.E; Elliott, G.P; Hitchmough, R.A; Miskelly, C.M; O'Donnell, C.F.J; Powlesland, R.G; Sagar, P.M; Scofield, R.P; Taylor, G.A. 2012. Conservation status of New Zealand birds, 2012. New Zealand Threat Classification Series 4. Department of Conservation, Wellington.
- Ryder Consulting. 2013. OceanaGold (New Zealand) Ltd Coronation Project Ecological Assessment. Unpub. Report by Dale, M; Ludgate, B; Ryder, G. Ryder Consulting Ltd, Dunedin.
- Scofield, P; Stephenson, B. 2013. Birds of New Zealand: a photographic guide. Auckland University Press, Auckland.
- Thompson, H.M. 1949. East of the Rock and Pillar: a history of the Strath Taieri and Macraes Districts.

 Otago Centennial Historical Publications, Whitcombe & Tombs, Christchurch.
- Thorsen, M. 2008. Where in New Zealand is the highest diversity of threatened plants? Trilepidea Newsletter 58: 4-8.
- Thorsen, M.J; Seddon, P.J; Dickinson, K.J.M. 2011. Faunal influences on New Zealand seed dispersal characteristics. Evolutionary Ecology 25: 1397-1426.
- Townsend, A.J; de Lange, P.J; Duffy, C.A.J; Miskelly, C.M; Molloy, J; Norton, D.A. 2007. New Zealand Threat Classification System Manual. Department of Conservation, Wellington.
- Walker, S; Cieraad, E; Grove, P; Lloyd, K; Myers, S; Park, T; Porteous, T. 2007. Guide for users of the threatened environment classification, Ver. 1.1. Landcare Research.
- Walker, S; Price, R; Rutledge, D. 2008. New Zealand's remaining indigenous cover: recent changes and biodiversity protection needs. Science for Conservation 284. Department of Conservation, Wellington.
- Whitaker, A.H. 1986. Macraes Flat Joint Venture area Terrestrial fauna of the Deepdell catchment, North Otago. Unpub. report to Homestake New Zealand Exploration Ltd. Auckland. 136pp.
- Whitaker, A.H. 1996. Impact of Agricultural development on grand skink (*Oligosoma grande*) (Reptilia: Scincidae) populations at Macraes Flat, Otago, New Zealand. Science for Conservation 33.

 Department of Conservation, Wellington.
- Whitaker, A.H; Tocher, M.D; Blair, T.A. 2002. Conservation of lizards in Otago Conservancy 2002–2007. Department of Conservation, Wellington. 92 pp.
- Williams, P.A; Wiser, S; Clarkson, B; Stanley, M.C. 2007. New Zealand's historically rare terrestrial ecosystems set in a physical and physiognomic framework. New Zealand Journal of Ecology 31: 119-128.

Page 109 of 125 ERA Ecology NZ Ltd

9 Appendices

Page 110 of 125 ERA Ecology NZ Ltd

Appendix 1. Biodiversity recorded during Coal Creek dam site and Coronation North inventories

9.1.1 *Flora*

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Acaena agnipila var. aequispina	Exotic	DICOTYLEDONOUS HERBS	Rosaceae	Occasional	Throughout	
Acaena anserinifolia (J.R.Forst. et G.Forst.) J.B.Armstr.	Not Threatened	DICOTYLEDONOUS HERBS	Rosaceae	Rare	Gully	
Acaena buchananii Hook.f.	Declining	DICOTYLEDONOUS HERBS	Rosaceae	Rare	Short tussockland	
Acaena caesiiglauca (Bitter) Bergmans	Not Threatened	DICOTYLEDONOUS HERBS	Rosaceae	Occasional	Shaded sites	
Aciphylla aurea W.R.B.Oliv.	Not Threatened	DICOTYLEDONOUS HERBS	Apiaceae	Common	Gully	
Aciphylla subflabellata W.R.B.Oliv.	Declining	DICOTYLEDONOUS HERBS	Apiaceae	Rare	Short tussockland	
Agrostis capillaris L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Common	Throughout	
Agrostis personata Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Agrostidinae)	Local	Ephemeral wetlands	
Agrostis stolonifera L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Wet sites	
Aira caryophyllea L. subsp. caryophyllea	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Rocky sites	
Alopecurus geniculatus L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Wet sites	
Anaphalioides bellidioides (G.Forst.) Glenny	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Gully	
Anisotome aromatica Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Apiaceae	Local	Shaded sites	
Anogramma leptophylla (L.) Link	Nationally Vulnerable	FERNS	Pteridaceae	Rare	Rocky sites	
Anthosachne falcis (Connor) Barkworth et S.W.L.Jacobs	Naturally Uncommon	MONOCOTYLEDONOUS HERBS	Poaceae (Hordeeae)	Occasional	Short tussockland	
Anthosachne solandri (Steud.) Barkworth et S.W.L.Jacobs	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Hordeeae)	Occasional	Gully	
Anthoxanthum odoratum L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Common	Throughout	
Anthriscus caucalis	Exotic	DICOTYLEDONOUS HERBS	Apiaceae	Local	Shaded sites	
Aphanes arvensis	Exotic	DICOTYLEDONOUS HERBS	Rosaceae	Occasional	Throughout	
Arrhenatherum elatius subsp. elatius (L.) J.Presl et C.Presl.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Gully	
Arthropodium candidum Raoul	Not Threatened	MONOCOTYLEDONOUS HERBS	Liliaceae	Rare	Rocky sites	
Asplenium flabellifolium Cav.	Not Threatened	FERNS	Aspleniaceae	Local	Shaded sites	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Asplenium richardii (Hook.f) Hook.f.	Not Threatened	FERNS	Aspleniaceae	Local	Rocky areas	
Astelia nervosa Hook.f.	Not Threatened	MONOCOTYLEDONOUS HERBS	Asteliaceae	Rare	Gully	
Austroderia richardii (Endl.) N.P.Barker et H.P.Linder	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Cortaderiinae)	Rare	Wet sites	
Blechnum montanum T.C.Chambers et P.A.Farrant	Not Threatened	FERNS	Blechnaceae	Local	Rocky sites	
Blechnum penna-marina subsp. alpina (R.Br.) T.C.Chambers et P.A.Farrant	Not Threatened	FERNS	Blechnaceae	Occasional	Shaded sites	
<i>Blechnum vulcanicum</i> (Blume) Kuhn	Not Threatened	FERNS	Blechnaceae	Local	Rocky sites	
Brachyglottis bellidioides (Hook.f.) B.Nord. var. bellidioides	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Local	Rocky sites	
Brachyglottis southlandica (Cockayne) B.Nord.	Locally Notable	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Rocky sites	
Brassica rapa L. var. rapa	Exotic	DICOTYLEDONOUS HERBS	Brassicaceae	Local	Cultivated areas	
Bromus hordeaceus L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Common	Throughout	
Bulbinella angustifolia (Cockayne et Laing) L.B.Moore	Not Threatened	MONOCOTYLEDONOUS HERBS	Asphodelaceae	Occasional	Gully	
Callitriche petriei R.Mason subsp. petriei	Not Threatened	DICOTYLEDONOUS HERBS	Plantaginaceae	Local	Wet sites	
Callitriche stagnalis Scop.	Exotic	DICOTYLEDONOUS HERBS	Plantaginaceae	Local	Wet sites	
Capsella bursa-pastoris	Exotic	DICOTYLEDONOUS HERBS	Brassicaceae	Common	Throughout	
Cardamine corymbosa Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Brassicaceae	Local	Shaded sites	
Carduus nutans	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Local	Throughout	
Cardamine bilobata Kirk	Naturally Uncommon	DICOTYLEDONOUS HERBS	Brassicaceae	Rare	Rocky sites	
Carex (CHR 586013; aff. C. punicea; Lammerlaw)	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Shaded sites	
Carex breviculmis R.Br.	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Rocky sites	
Carex coriacea Hamlin	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	
Carex flagellifera Colenso	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Rocky sites	
Carex gaudichaudiana Kunth	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	ID provisional as plants not flowering
Carex inversa R.Br.	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	
Carex kaloides Petrie	Locally Notable	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Carex ovalis Gooden.	Exotic	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	
Carex secta Boott	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	
Carex sinclairii Boott	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	ID provisional as plants not flowering
Carex tenuiculmis (Petrie) Heenan et de Lange	Declining	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Wet sites	
Carex testacea Sol. ex Boott	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	Two-three forms present?
Carex subtilis K.A.Ford	Naturally Uncommon	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Shaded sites	
Carex wakatipu Petrie	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Shaded sites	
Carmichaelia corrugata Colenso	Declining	DICOTYLEDONOUS TREES AND SHRUBS	Fabaceae	Local	Short tussockland	
Carmichaelia crassicaulis Hook.f. subsp. crassicaulis	Declining	DICOTYLEDONOUS TREES AND SHRUBS	Fabaceae	Occasional	Rocky sites	
Carmichaelia petriei Kirk	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Fabaceae	Rare	Gully	
Celmisia (g) (CHR 274779; "rhizomatous")	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Wet sites	
Celmisia gracilenta Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Rocky sites	
Celmisia hookeri Cockayne	Naturally Uncommon	DICOTYLEDONOUS HERBS	Asteraceae	Local	Rocky sites	
Cerastium fontanum subsp. vulgare (Hartm.) Greuter et Burdet	Exotic	DICOTYLEDONOUS HERBS	Caryophyllaceae	Local	Shaded sites	
Cerastium glomeratum Thuill.	Exotic	DICOTYLEDONOUS HERBS	Caryophyllaceae	Common	Throughout	
Cerastium semidecandrum L.	Exotic	DICOTYLEDONOUS HERBS	Caryophyllaceae	Occasional	Pasture	
Chaerophyllum ramosum (Hook.f.) K.F.Chung	Not Threatened	DICOTYLEDONOUS HERBS	Apiaceae	Occasional	Shaded sites	
Chionochloa rigida (Raoul) Zotov subsp. rigida	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Common	Gully	
<i>Chionochloa rubra</i> subsp. <i>cuprea</i> Connor	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Local	Wet sites	
Chionochloa rubra subsp. cuprea X C. rigida subsp. rigida	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Local	Wet sites	
Cirsium arvense	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Throughout	
Cirsium vulgare	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Throughout	
Clematis marata J.B.Armstr.	Not Threatened	DICOTYLEDONOUS LIANES & RELATED TRAILING PLANTS	Ranunculaceae	Occasional	Shrubland	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Colobanthus apetalus (Labill.) Druce	Not Threatened	DICOTYLEDONOUS HERBS	Caryophyllaceae	Local	Rocky sites	
Coprosma crassifolia Colenso	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Rubiaceae	Local	Rocky sites	
Coprosma dumosa (Cheeseman) G.T.Jane.	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Rubiaceae	Rare	Rocky sites	Red-fruited form in Coal Creek dam area
Coprosma intertexta G.Simpson	Declining	DICOTYLEDONOUS TREES AND SHRUBS	Rubiaceae	Local	Rocky sites	
Coprosma petriei Cheeseman	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Rubiaceae	Local	Short tussockland	
Coprosma propinqua A.Cunn. var. propinqua	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Rubiaceae	Local	Gully	
Coriaria sarmentosa G.Forst.	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Coriariaceae	Rare	Rocky sites	
Crassula colligata Toelken subsp. colligata	Not Threatened	DICOTYLEDONOUS HERBS	Crassulaceae	Rare	Rocky sites	
Crepis capillaris	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Shaded sites	
Critesion murinum subsp. murinum	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Occasional	Dry sites & pasture	
Cynosurus cristatus L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Occasional	Wet sites	
Cystopteris fragilis (L.) Bernh.	Exotic	FERNS	Cystopteridaceae	Rare	Rocky sites	
Cytisus scoparius	Exotic	DICOTYLEDONOUS TREES AND SHRUBS	Fabaceae	Local	Gully	
Dactylis glomerata L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Occasional	Throughout	
<i>Deschampsia cespitosa</i> (L.) P.Beauv.	Declining	MONOCOTYLEDONOUS HERBS	Poaceae (Aveninae)	Local	Ephemeral wetlands	
<i>Deyeuxia avenoides</i> (Hook.f.) Buchanan	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Agrostidinae)	Occasional	Tussockland	
Dichelachne crinita (L.f.) Hook.f.	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Agrostidinae)	Local	Rocky sites	
<i>Dichondra repens</i> J.R.Forst et G.Forst	Not Threatened	DICOTYLEDONOUS HERBS	Convolvulaceae	Occasional	Throughout	
Digitalis purpurea L.	Exotic	DICOTYLEDONOUS HERBS	Scrophulariaceae	Rare	Gully	
Discaria toumatou Raoul	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Rhamnaceae	Common	Gully	
Echinopogon ovatus (G.Forst.) P.Beauv.	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Agrostidinae)	Rare	Rocky sites	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Eleocharis acuta R.Br.	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	
Epilobium alsinoides A.Cunn.	Not Threatened	DICOTYLEDONOUS HERBS	Onagraceae	Rare	Rocky sites	ID provisional as plants not flowering
Epilobium brunnescens (Cockayne) P.H.Raven et Engelhorn subsp. brunnescens	Not Threatened	DICOTYLEDONOUS HERBS	Onagraceae	Rare	Rocky sites	
Epilobium insulare Hausskn.	Data Deficient	DICOTYLEDONOUS HERBS	Onagraceae	Local	Wet sites	
Dracophyllum uniflorum var. frondosum G.Simpson	Naturally Uncommon	DICOTYLEDONOUS TREES AND SHRUBS	Ericaceae	Rare	Rocky sites	
Epilobium komarovianum H.Lev	Not Threatened	DICOTYLEDONOUS HERBS	Onagraceae	Rare	Wet sites	
Epilobium pubens A.Rich.	Not Threatened	DICOTYLEDONOUS HERBS	Onagraceae	Local	Rocky sites	
Erodium cicutarium (L.) L'Hér.	Exotic	DICOTYLEDONOUS HERBS	Geraniaceae	Occasional	Throughout	
Euchiton lateralis (C.J.Webb) Breitw. et J.M.Ward	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Gully	
Euchiton limosus (D.G.Drury) Holub	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Wet sites	
Euchiton ruahinicus (D.G.Drury) Breitw. et J.M.Ward	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Short tussockland	
Festuca filiformis Pourr.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Gully	
Festuca novae-zelandiae (Hack.) Cockayne	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Poeae)	Common	Gully	
Festuca rubra subsp. commutata	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Occasional	Throughout	
Galium (b) (CHR 469914; aff. G. perpusillum; "lacustrine")	Not Threatened	DICOTYLEDONOUS HERBS	Rubiaceae	Local	Ephemeral wetlands	
Galium aparine	Exotic	DICOTYLEDONOUS HERBS	Rubiaceae	Rare	Shaded sites	
<i>Galium perpusillum</i> (Hook.f.) Allan	Not Threatened	DICOTYLEDONOUS HERBS	Rubiaceae	Rare	Wet sites	
Galium propinquum A.Cunn.	Not Threatened	DICOTYLEDONOUS HERBS	Rubiaceae	Rare	Rocky sites	
Gaultheria antipoda G.Forst.	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Ericaceae	Local	Rocky sites	
Gaultheria depressa Hook.f. var. depressa	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Ericaceae	Local	Short tussockland	
Gaultheria macrostigma (Colenso) D.J.Middleton	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Ericaceae	Local	Short tussockland	
Gentianella amabilis (Petrie) Glenny	Not Threatened	DICOTYLEDONOUS HERBS	Gentianaceae	Rare	Ephemeral wetlands	
Geranium (d) (; aff. G. microphyllum; "mainland")	Not Threatened	DICOTYLEDONOUS HERBS	Geraniaceae	Local	Shaded sites	

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Geranium brevicaule Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Geraniaceae	Rare	Rocky sites	
Geum leiospermum Petrie	Not Threatened	DICOTYLEDONOUS HERBS	Rosaceae	Rare	Shaded sites	
Glyceria declinata Bréb.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Rare	Wet sites	
Glyceria fluitans (L.) R.Br.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Wet sites	
Gonocarpus aggregatus (Buchanan) Orchard	Not Threatened	DICOTYLEDONOUS HERBS	Haloragaceae	Rare	Rocky sites	
Gonocarpus micranthus Thunb. subsp. micranthus	Not Threatened	DICOTYLEDONOUS HERBS	Haloragaceae	Local	Wet sites	
Helichrysum filicaule Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Local	Shaded sites	
Herpolirion novae-zelandiae Hook.f.	Not Threatened	MONOCOTYLEDONOUS HERBS	Xanthorrhoeaceae	Rare	Tussockland	
Hieracium lepidulum	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Local	Rocky sites	
Histiopteris incisa (Thunb.) J. Sm.	Not Threatened	FERNS	Dennstaedtiaceae	Rare	Wet sites	
Holcus lanatus L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Throughout	
Hydrocotyle hydrophila Petrie	Not Threatened	DICOTYLEDONOUS HERBS	Araliaceae	Local	Wet sites	
Hydrocotyle microphylla A.Cunn.	Not Threatened	DICOTYLEDONOUS HERBS	Araliaceae	Rare	Wet sites	
Hydrocotyle moschata G.Forst. var. moschata	Not Threatened	DICOTYLEDONOUS HERBS	Araliaceae	Local	Rocky sites	
Hypochaeris radicata	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Throughout	
Isolepis caligenis (V.J.Cook) Soják	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	
Isolepis pottsii (V.J.Cook) Soják	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Wet sites	
Isolepis reticularis Colenso	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Gully	
Juncus amabilis	Exotic	MONOCOTYLEDONOUS HERBS	Juncaceae	Rare	Wet sites	
Juncus articulatus L.	Exotic	MONOCOTYLEDONOUS HERBS	Juncaceae	Local	Wet sites	
Juncus bufonius var. bufonius	Exotic	MONOCOTYLEDONOUS HERBS	Juncaceae	Local	Wet sites	
Juncus distegus Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Juncaceae	Local	Wet sites	
<i>Juncus edgariae</i> L.A.S.Johnson et K.L.Wilson	Not Threatened	MONOCOTYLEDONOUS HERBS	Juncaceae	Rare	Wet sites	
Juncus effusus var. compactus	Exotic	MONOCOTYLEDONOUS HERBS	Juncaceae	Local	Wet sites	
Juncus pusillus Buch.	Not Threatened	MONOCOTYLEDONOUS HERBS	Juncaceae	Rare	Wet sites	
Lagenophora barkeri Kirk	Naturally Uncommon	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Wet sites	
Lagenophora cuneata Petrie	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Rocky sites	
Lagenophora petiolata Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Local	Wet sites	
Lemna disperma Hegelm.	Not Threatened	MONOCOTYLEDONOUS HERBS	Araceae	Rare	Pond	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Leptinella pusilla Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Shaded sites	
Leontodon autumnalis subsp. autumnalis	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Throughout	
Leucopogon fraseri complex (mountain ecotype)	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Ericaceae	Local	Gully	
Linum catharticum L.	Exotic	DICOTYLEDONOUS HERBS	Linaceae	Rare	Wet sites	
Lobelia angulata G.Forst.	Not Threatened	DICOTYLEDONOUS HERBS	Campanulaceae	Rare	Shaded sites	
Lolium perenne L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Common	Throughout	
Luzula banksiana var. rhadina (Buch.) Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Juncaceae	Local	Rocky sites	
<i>Luzula picta</i> var. <i>limosa</i> Buch. et Petrie	Not Threatened	MONOCOTYLEDONOUS HERBS	Juncaceae	Local	Wet sites	
Luzula rufa Edgar var. rufa	Not Threatened	MONOCOTYLEDONOUS HERBS	Juncaceae	Occasional	Throughout	
Marrubium vulgare	Exotic	DICOTYLEDONOUS HERBS	Lamiaceae	Occasional	Throughout	
<i>Melicytus alpinus</i> (Kirk) Garn Jones	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Violaceae	Occasional	Throughout	Possibly two forms present: one tall and shrubby and a commoner sprawling low shrub
Mentha spicata L. subsp. spicata	Exotic	DICOTYLEDONOUS HERBS	Lamiaceae	Local	Wet sites	
Microtis unifolia (G.Forst.) Rchb.f.	Not Threatened	MONOCOTYLEDONOUS HERBS	Orchidaceae	Rare	Tussockland	
Montia fontana L. subsp. fontana	Not Threatened	DICOTYLEDONOUS HERBS	Montiaceae	Local	Wet sites	
<i>Montia sessiliflora</i> (G.Simpson) Heenan	Not Threatened	DICOTYLEDONOUS HERBS	Montiaceae	Local	Wet sites	
<i>Muehlenbeckia axillaris</i> (Hook.f.) Endl.	Not Threatened	DICOTYLEDONOUS LIANES & RELATED TRAILING PLANTS	Polygonaceae	Rare	Rocky sites	Many plants infested with red galls
Muehlenbeckia complexa (A.Cunn.) Meisn. var. complexa	Not Threatened	DICOTYLEDONOUS LIANES & RELATED TRAILING PLANTS	Polygonaceae	Common	Gully	
Myosotis discolor Pers.	Exotic	DICOTYLEDONOUS HERBS	Boraginaceae	Local	Gully	
Myosotis laxa Lehm. subsp. caespitosa (Schultz) Nordh.	Exotic	DICOTYLEDONOUS HERBS	Boraginaceae	Local	Wet sites	
<i>Myriophyllum propinquum</i> A.Cunn.	Not Threatened	DICOTYLEDONOUS HERBS	Haloragaceae	Local	Ephemeral wetlands	
Myriophyllum triphyllum Orchard	Not Threatened	DICOTYLEDONOUS HERBS	Haloragaceae	Local	Pond	
Olearia odorata Petrie	Locally Notable	DICOTYLEDONOUS TREES AND SHRUBS	Asteraceae	Rare	Rocky sites	
Nasturtium microphyllum Boenn. ex Rchb.	Exotic	DICOTYLEDONOUS HERBS	Brassicaceae	Local	Wet sites	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Nematoceras longipetalum (Hatch) Molloy, D.L.Jones et M.A.Clem.	Not Threatened	MONOCOTYLEDONOUS HERBS	Orchidaceae	Local	Rocky sites	
<i>Olearia bullata</i> H.D.Wilson et GarnJones	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Asteraceae	Local	Wet sites	
Oreobolus impar Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Rare	Ephemeral wetlands	
Oxalis exilis A.Cunn.	Not Threatened	DICOTYLEDONOUS HERBS	Oxalidaceae	Local	Shaded sites	
Oxalis magellanica G.Forst.	Not Threatened	DICOTYLEDONOUS HERBS	Oxalidaceae	Local	Gully	
Pachycladon cheesemanii Heenan et A.Mitch.	Nationally Vulnerable	DICOTYLEDONOUS HERBS	Brassicaceae	Rare	Rocky sites	
Pentachondra pumila (J.R.Forst. et G.Forst.) R.Br.	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Ericaceae	Local	Tussockland	
Phleum pratense L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Rare	Gully	
Pilosella officinarum F.Schultz & Sch.Bip.	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Common	Throughout	
<i>Pimelea oreophila</i> subsp. <i>lepta</i> C.J.Burrows	Not Threatened	DICOTYLEDONOUS TREES AND SHRUBS	Thymelaeaceae	Rare	Rocky sites	
Pinus radiata D.Don	Exotic	GYMNOSPERM TREES AND SHRUBS	Pinaceae	Local	Shelterbelts	
Plantago lanceolata	Exotic	DICOTYLEDONOUS HERBS	Plantaginaceae	Common	Pasture	
Plantago major	Exotic	DICOTYLEDONOUS HERBS	Plantaginaceae	Rare	Wet sites	
Plantago raoulii Decne.	Not Threatened	DICOTYLEDONOUS HERBS	Plantaginaceae	Local	Wet sites	
Poa annua L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Occasional	Shaded areas	
Poa breviglumis Hook.f.	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Poeae)	Local	Rocky sites	
Poa cita Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Poeae)	Local	Gullies	
Poa colensoi Hook.f.	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Poeae)	Occasional	Throughout	Two forms present: larger green plants usually in shaded sites and smaller glaucous plants on open dry sites
Poa imbecilla Spreng.	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Poeae)	Local	Rocky sites	
Poa kirkii Buchanan	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Poeae)	Rare	Rocky sites	
Poa palustris L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Rare	Wet sites	
Poa pratensis L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Common	Throughout	
Poa trivialis L.	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Local	Wet sites	
<i>Polystichum vestitum</i> (G. Forst.) C. Presl	Not Threatened	FERNS	Dryopteridaceae	Occasional	Gully	
Potamogeton cheesemanii A.Benn.	Not Threatened	MONOCOTYLEDONOUS HERBS	Potamogetonaceae	Rare	Wet sites	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Potentilla anserinoides Raoul	Not Threatened	DICOTYLEDONOUS HERBS	Rosaceae	Rare	Wet sites	
Prunella vulgaris	Exotic	DICOTYLEDONOUS TREES AND SHRUBS	Lamiaceae	Local	Shaded sites	
Pseudognaphalium luteoalbum (L.) Hilliard et B.L.Burtt	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Rocky sites	
Pteridium esculentum (G. Forst.) Cockayne	Not Threatened	FERNS	Dennstaedtiaceae	Local	Gullies	
Ranunculus foliosus Kirk	Not Threatened	DICOTYLEDONOUS HERBS	Ranunculaceae	Local	Shaded sites	
Ranunculus glabrifolius Hook.	Not Threatened	DICOTYLEDONOUS HERBS	Ranunculaceae	Local	Wet sites	
Ranunculus multiscapus Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Ranunculaceae	Local	Gully	
Ranunculus royi G.Simpson	Not Threatened	DICOTYLEDONOUS HERBS	Ranunculaceae	Rare	Shaded sites	
Ranunculus sceleratus L.	Exotic	DICOTYLEDONOUS HERBS	Ranunculaceae	Rare	Wet sites	
Ranunculus ternatifolius Kirk	Nationally Vulnerable	DICOTYLEDONOUS HERBS	Ranunculaceae	Rare	Wet sites	
Ranunculus trichophyllus Chaix	Exotic	DICOTYLEDONOUS HERBS	Ranunculaceae	Local	Wet sites	
Raoulia australis Hook.f. ex Raoul	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Gully	
Raoulia subsericea Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Tussockland	
Ribes uva-crispa	Exotic	DICOTYLEDONOUS TREES AND SHRUBS	Grossulariaceae	Rare	Shrubland	
Rosa rubiginosa	Exotic	DICOTYLEDONOUS TREES AND SHRUBS	Rosaceae	Occasional	Gully	
Rubus schmidelioides var. subpauperatus (Cockayne) Allan	Not Threatened	DICOTYLEDONOUS LIANES & RELATED TRAILING PLANTS	Rosaceae	Occasional	Rocky sites	
Rumex acetosella	Exotic	DICOTYLEDONOUS HERBS	Polygonaceae	Common	Throughout	
Rumex crispus	Exotic	DICOTYLEDONOUS HERBS	Polygonaceae	Occasional	Gully	
Rumex flexuosus Spreng. in Biehler	Locally Notable	DICOTYLEDONOUS HERBS	Polygonaceae	Local	Wet sites	
Rytidosperma clavatum (Zotov) Connor et Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Local	Throughout	Slender form
<i>Rytidosperma corinum</i> Connor et Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Local	Rocky areas	
Rytidosperma gracile (Hook.f.) Connor et Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Local	Shaded sites	
Rytidosperma nigricans (Petrie) Connor et Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Local	Wet sites	
Rytidosperma pumilum (Kirk) Connor et Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Occasional	Tussockland	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Rytidosperma unarede (Raoul) Connor et Edgar	Not Threatened	MONOCOTYLEDONOUS HERBS	Poaceae (Danthonieae)	Local	Shaded sites	
Sagina procumbens L.	Exotic	DICOTYLEDONOUS HERBS	Caryophyllaceae	Local	Wet sites	
Sambucus nigra	Exotic	DICOTYLEDONOUS TREES AND SHRUBS	Caprifoliaceae	Occasional	Rocky sites	
Schizeilema haastii var. cyanopetalum (Domin) Cheeseman	Not Threatened	DICOTYLEDONOUS HERBS	Araliaceae	Local	Shaded sites	
Schizeilema trifoliolatum (Hook.f.) Domin	Not Threatened	DICOTYLEDONOUS HERBS	Araliaceae	Local	Rocky sites	
Schoenus pauciflorus (Hook.f.) Hook.f.	Not Threatened	MONOCOTYLEDONOUS HERBS	Cyperaceae	Local	Wet sites	
Scleranthus brockiei P.A.Will.	Not Threatened	DICOTYLEDONOUS HERBS	Caryophyllaceae	Rare	Short tussockland	
Senecio dunedinensis Belcher	Nationally Vulnerable	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Rocky sites	
Scleranthus uniflorus P.A.Will.	Not Threatened	DICOTYLEDONOUS HERBS	Caryophyllaceae	Rare	Rocky areas	
Senecio quadridentatus Labill.	Not Threatened	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Rocky sites	
Sherardia arvensis	Exotic	DICOTYLEDONOUS HERBS	Rubiaceae	Rare	Shaded sites	
Simplicia laxa Kirk	Nationally Critical	MONOCOTYLEDONOUS HERBS	Poaceae (Agrostidinae)	Rare	Rocky sites	
Sonchus (b) (CHR 596666; aff. S. novae-zelandiae; "cliff")	Nationally Vulnerable	DICOTYLEDONOUS HERBS	Asteraceae	Rare	Rocky sites	
Stellaria alsine Grimm	Exotic	DICOTYLEDONOUS HERBS	Caryophyllaceae	Local	Wet sites	
Stellaria gracilenta Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Caryophyllaceae	Rare	Rocky sites	
Stellaria media (L.) Vill. subsp. media	Exotic	DICOTYLEDONOUS HERBS	Caryophyllaceae	Occasional	Shaded sites	
Stellaria parviflora Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Caryophyllaceae	Rare	Shaded sites	
Taraxacum officinale agg.	Exotic	DICOTYLEDONOUS HERBS	Asteraceae	Occasional	Shaded sites	
Thelymitra sp.	Not Threatened	MONOCOTYLEDONOUS HERBS	Orchidaceae	Rare	Tussockland	
Trifolium arvense	Exotic	DICOTYLEDONOUS HERBS	Fabaceae	Common	Throughout	
Trifolium dubium	Exotic	DICOTYLEDONOUS HERBS	Fabaceae	Occasional	Throughout	
Trifolium pratense	Exotic	DICOTYLEDONOUS HERBS	Fabaceae	Local	Shaded sites	
Trifolium repens	Exotic	DICOTYLEDONOUS HERBS	Fabaceae	Common	Throughout	
Verbascum thapsus L.	Exotic	DICOTYLEDONOUS HERBS	Scrophulariaceae	Rare	Gully	
Veronica rakaiensis J.B.Armstr.	Locally Notable	DICOTYLEDONOUS TREES AND SHRUBS	Plantaginaceae	Local	Rocky sites	

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance overall	Habitat	Notes
Veronica salicifolia G.Forst.	Locally Notable	DICOTYLEDONOUS TREES AND SHRUBS	Plantaginaceae	Rare	Rocky sites	
Veronica serpyllifolia	Exotic	DICOTYLEDONOUS HERBS	Plantaginaceae	Local	Wet sites	
Vicia sativa	Exotic	DICOTYLEDONOUS HERBS	Fabaceae	Rare	Shaded sites	
Viola cunninghamii Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Violaceae	Rare	Gully	
Viola filicaulis Hook.f.	Not Threatened	DICOTYLEDONOUS HERBS	Violaceae	Local	Wet sites	
Vulpia bromoides (L.) Gray	Exotic	MONOCOTYLEDONOUS HERBS	Poaceae	Common	Throughout	
Wahlenbergia albomarginata subsp. albomarginata (Linear leaved form W. brockiei)	Not Threatened	DICOTYLEDONOUS HERBS	Campanulaceae	Occasional	Gully	
<i>Wahlenbergia rupestris</i> G.Simpson	Not Threatened	DICOTYLEDONOUS HERBS	Campanulaceae	Rare	Rocky sites	
<i>Wahlenbergia violacea</i> J.A.Petterson	Not Threatened	DICOTYLEDONOUS HERBS	Campanulaceae	Rare	Rocky sites	

9.1.2 Avifauna

Current name	Threat ranking (2012)	Group 1	Family (Tribe)	Abundance Habitat	Notes
Alauda arvensis	Exotic	VERTEBRATE	Alaudidae	Occasional	Several individuals seen in area
Anthus novaeseelandiae Gmelin subsp. novaeseelandiae	Declining	VERTEBRATE	Motacillidae	Local	Several seen in Trimbells Gully tussockland
Carduelis flammea subsp. cabaret	Exotic	VERTEBRATE	Fringillidae	Local	1 flock seen feeding on grasses
Circus approximans Peale	Not Threatened	VERTEBRATE	Accipitridae	Rare	1(-2) individuals seen flying in area.
Emberiza citrinella subsp. caliginosa	Exotic	VERTEBRATE	Emberizidae	Local	Occasional flock seen feeding in area
Fringilla coelebs L	Exotic	VERTEBRATE	Fringillidae	Rare	1 individual seen
Gerygone igata Quoy & Gaimard	Not Threatened	VERTEBRATE	Acanthizidae	Rare	1 seen in gully shrubland
Passer domesticus Linnaeus, 1758 subsp. domesticus	Exotic	VERTEBRATE	Passeridae	Local	Several pairs seen in gully shrublands. Probably breeding at site
Tadorna variegata Gmelin	Not Threatened	VERTEBRATE	Anatidae	Local	Breeding on farm pond
Turdus philomelos subsp. clarkei	Exotic	VERTEBRATE	Turdidae	Occasional	Several individuals seen in area
Vanellus miles (Boddaert, 1783)	Not Threatened	VERTEBRATE	Charadriidae	Local	1-2 pairs in area

9.1.3 Herpetofauna

Current name		Threat ranking (2012)	Group 1	Family (Tribe)	Abundance Habitat	Notes
Oligosoma maccanni Daugherty, 1990) (cla genotype)	ade 4	Not Threatened	VERTEBRATE	Scinicidae	Occasional	Mainly in tussock and shrubland areas
Oligosoma polychron & Daugherty, 1990) (genotype)		Declining	VERTEBRATE	Scinicidae	Local	Damp vegetated gully bottoms
Woodworthia "Otago	Large"	Declining	VERTEBRATE	Gekkonidae	Local	Rock outcrops

OceanaGold – Coal Creek dam: Vegetation, Avifauna & Herpetofauna Ecological Impact Assessment – FINAL

OceanaGold – Impact of Coal Creek Dam – Draft1.1

Appendix 2. Abbreviations used in text

DCC Dunedin City Council

DOC Department of Conservation

E.D. Ecological District

EMP Ecological Management Plan
OceanaGold Oceana Gold (New Zealand) Ltd

ORC Otago Regional Council
PIA Project Impact Area
WDC Waitaki District Council
WRS Waste Rock Stack

Page 125 of 125 ERA Ecology NZ Ltd