Appendix 6: Geotechnical Factual Report

Dunedin City Council

Waste Futures - Smooth Hill Landfill Geotechnical Factual Report

August 2020

Table of contents

	1.	Intro	duction	3
		1.1	Project background	3
		1.2	Scope of geotechnical investigation	5
	2.	Site	Setting	6
		2.1	Site description	6
		2.2	Local geology	7
		2.3	Historic mining	9
		2.4	Previous investigations	9
	3.	Sumi	mary of Investigations	10
		3.1	General	10
		3.2	Machine boreholes	10
		3.3	Piezometers	11
		3.4	Test pits	12
		3.5	Bulk samples	
		3.6	Groundwater	
		3.7	Investigation cCoordinates	
		3.8	Laboratory testing	
	4.		rences	
	5.	Limit	ations	24
Τá	abl	e ir	ndex	
	Tabl	e 1 Sur	mmary of known faults	8
	Tabl	e 2 Sur	mmary of machine boreholes	11
	Tabl	e 3 Sur	mmary of piezometer details	12
	Tabl	e 4 Tes	st pit summary	13
	Tabl	e 5 Bul	k sample summary	14
	Tabl	e 6 Sur	mmary of measured groundwater levels	15
	Tabl	e 7 Sur	mmary of test location positions	16
	Tabl	e 8 Sur	mmary of geotechnical laboratory testing	17
	Tabl	e 9 Sur	mmary of geotechnical laboratory testing for stabilised soils	18
	Tabl	e 10 Sı	ummary of geotechnical laboratory testing for engineered fill	19
			ummary of particle size distribution test results (NZS 4402:1986, Test 2.8.1 and 2.8.4)	
	Tabl	e 12 Sı	ummary of Atterberg limit test results (NZS 4402:1986, Test 2.1, 2.2, 2.3 and 2.4)	

	Table 13 Summary of NZ standard compaction test results (NZS 4402:1986, Test 2.1 and 4.1.1)	19
	Table 14 Summary of pinhole dispersion test results (ASTM D4647-13e1)	20
	Table 15 Summary of crumb test results (ASTM D6572-13e2 (Method B))	20
	Table 16 Summary of triaxial permeability test results (ASTM D5084-16a)	20
	Table 17 Summary of Atterberg limit test results (Natural Soils)	21
	Table 18 Summary of lime demand test results	21
	Table 19 Summary of Atterberg limit test results (Henley Breccia Formation)	21
	Table 20 Summary of NZ standard compaction test results (Henley Breccia Formation)	22
	Table 21 Summary of unconfined compressive strength of re-compacted samples (Henley Breccia Formation)	22
- j	gure index	
	Figure 1 Site location	3
	Figure 2 - Site Environs	5
	Figure 3 Proposed landfill site (base image sourced from Google Maps)	6
	Figure 4 Excerpt from 1:50,000 Geology of the Milton Area (Bishop, 1994)	7

Appendices

Appendix A - Plans

Appendix B – Borehole and Test Pit Logs and Photographs

Appendix C – Laboratory Testing Results

1. Introduction

1.1 Project background

The Dunedin City Council (Council) collects residential waste and manages the disposal of both residential and the majority of commercial waste for the Dunedin City area and environs.

The Council has embarked on the Waste Futures Project to develop an improved comprehensive waste management and diverted material system for Dunedin, including future kerbside collection and waste disposal options. As part of the project, the Council has confirmed the need to develop a new landfill to replace the Council's current Green Island Landfill, which is likely to come to the end of its functional life sometime between 2023 and 2028.

The Council commenced a search for a new landfill location in the late 1980s and early 1990s and selected the Smooth Hill site in south-west Dunedin, shown in Figure 1 below, as the preferred option. At that time, the site was designated in the Dunedin District Plan, signalling and enabling its future use as a landfill site. The Council also secured an agreement with the current landowner, Fulton Hogan Ltd, to purchase the land. Over the following period, the Council extended the life of Green Island Landfill and further development of the Smooth Hill site has been on hold.

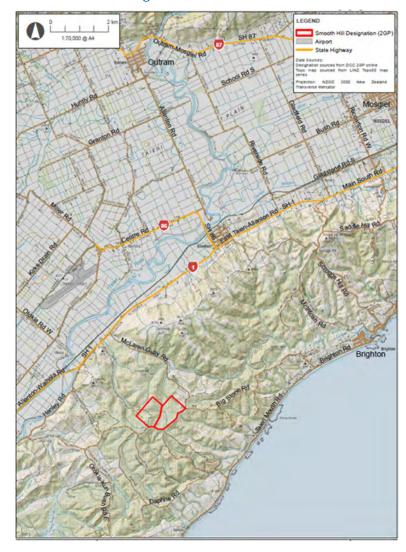


Figure 1 Site location

As part of the Waste Future's Project, the Council has reconfirmed the technical suitability of Smooth Hill for the disposal of waste. The Council has proceeded to develop a concept design for the landfill and associated road upgrades. The concept design (the subject of this report) for the landfill has been developed by GHD Ltd (GHD) with technical input from Boffa Miskell, and represents contemporary good practice landfill design that meets adopted New Zealand landfill design standards.

The proposal includes the following key components:

- The staged construction, operation, and aftercare of a Class 1 landfill within the existing designated site to accept municipal solid waste. The landfill will have a capacity of approximately 6 million cubic metres (equivalent to 5 million tonnes), and expected life (at current Dunedin disposal rates) of approximately 55 years. The landfill will receive waste only from commercial waste companies or bulk loads.
- Infrastructure to safely collect, manage, and dispose of landfill leachate, gas, groundwater, and stormwater to avoid consequential adverse effects on the receiving environment.
- Facilities supporting the operation of the landfill, including staff and maintenance facilities.
- Environmental monitoring systems.
- Landscape and ecological mitigation, including planting.
- Upgrades to McLaren Gully Road including its intersection with State Highway 1, and Big Stone Road, to facilitate vehicle access to the site.

The proposed Smooth Hill landfill site is located approximately 23 km southwest of Dunedin City. The boundary of the proposed site is shown in Figure 2. The waste facility itself will operate within these boundaries.

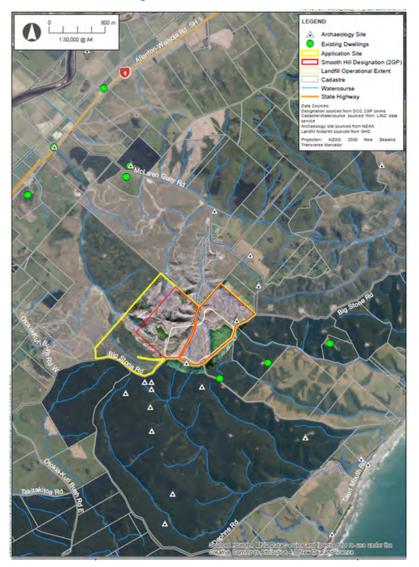


Figure 2 - Site Environs

1.2 Scope of geotechnical investigation

This report presents the factual results of the geotechnical investigation along with published and Client supplied geotechnical data related to the proposed waste site development. The purpose of the investigation was to assess the subsurface geotechnical and hydrogeological conditions at the proposed Smooth Hill landfill site. The hydrogeology is reported separately.

This information in this report has been used to inform and support the landfill design and the Assessment of Environmental Effects (AEE) and resource consent applications.

2. Site Setting

2.1 Site description

The proposed site is bordered by Big Stone Road along its southern boundary. Access from State Highway 1 (SH1) is currently via McLaren Gully Road. The proposed site is bounded to the north and west by forestry land, and to the northeast by farmland. Figure 3 provides a closer view of the proposed site.

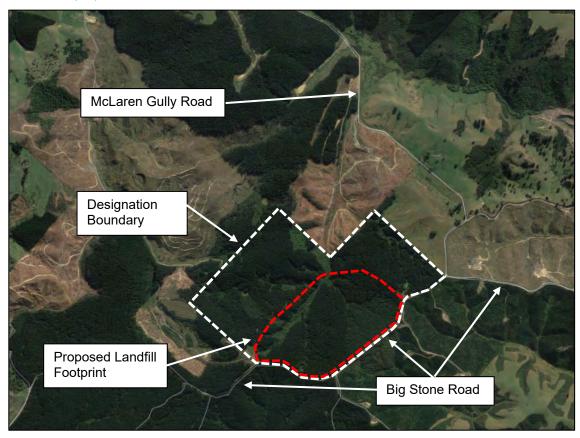


Figure 3 Proposed landfill site (base image sourced from Google Maps)

The proposed site is located in a south to north trending gully, which is fed by smaller gullies from the east, west and south. The flow direction for water exiting the gully is from the south to the north. The slopes around the southern half of the site form a natural "amphitheatre" shape, which is bisected by a larger central ridge, and a smaller ridge in the south-western corner – both trending south to north.

The site was, until recently, covered by a Radiata Pine plantation, the site cover is now a mixture of scrub, bare earth, forestry waste and replanted pine. A number of existing forestry tracks provide access around the site.

The ground is typically wet and boggy in the base of the gullies where there is standing or seeping water.

6 | GHD | Report for Dunedin City Council - Waste Futures Phase 2, Workstream 3, 12506381//

2.2 Local geology

2.2.1 Published geology

A review of the available geological maps (Bishop [1994], and Bishop and Turnbull [1996]) covering the site shows that the main lithology expected to be encountered is the Henley Breccia unit. Although not shown on the geological map, it is expected that the Henley Breccia unit is overlain by several metres of loess deposits, and locally by alluvium and colluvium.

Figure 4 presents an excerpt from the Bishop (1994) geological map.

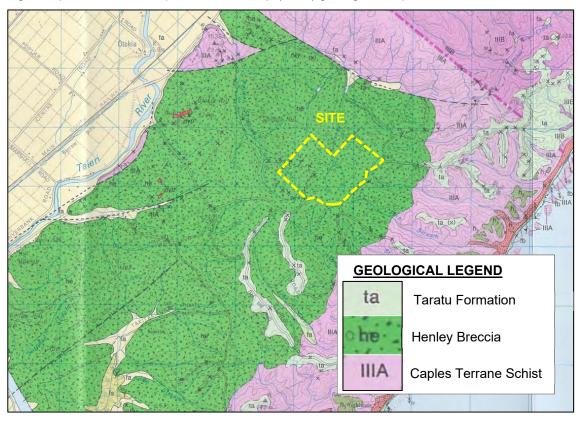


Figure 4 Excerpt from 1:50,000 Geology of the Milton Area (Bishop, 1994)

2.2.2 Expected lithologies

The basement rock in the proposed site area is expected to be Caples Terrane schist, textural zone IIIA (map symbol *IIIA*), which comprises well foliated quartzofeldspathic schist with prominent quartz veins. The schist was metamorphosed in the Jurassic period, and the metamorphic grade (textural zone) increases northward.

The schist basement is overlain unconformably by the Upper Cretaceous Henley Breccia (map symbol *he*) – a terrestrial sequence of piedmont breccias and conglomerates up to 1000 m thick. The breccia was derived from a high-standing schist block immediately west of the present-day Titri Fault. Henley Breccia was tilted before the formation of the Otago peneplain, which was cut across both it and the schist basement prior to the deposition of a relatively thin set of transgressive Upper Cretaceous to Tertiary terrestrial and shallow marine sediments (Bishop & Turnbull, 1996).

Taratu Formation (map symbol *ta*) is mapped as outcropping along the tops of several ridgelines to the south and east of the site. The Taratu Formation unconformably overlies the Henley Breccia and comprises yellow quartz sand and pebble conglomerate, with minor clay, carbonaceous siltstone and lignite, and limonite and silica cemented quartz conglomerate.

Bishop (1994), and Bishop & Turnbull (1996) have not mapped surficial materials such as loess, weathered bedrock or organic soils. However, the following description of loess soils in Otago is provided in Bishop & Turnbull (1996): "In the Dunedin map area, such unmapped surficial materials are dominated by loess which, where remobilised, grades into loess colluvium... Loess forms a widespread blanket across most of eastern Otago, particularly near the coast... Loess typically forms a yellow-brown, massive layer or series of layers, mixed at the base with weathered bedrock and overlain by darker organic-rich soil. Columnar jointing and shrinkage cracks are common. Where loess mantles slopes, down-slope creep and alluvial processes have incorporated clasts of weathered underlying material, upslope material, and organic matter to form 'loess colluvium'."

2.2.3 Nearby faults

There are a number of mapped faults in the Otago region. The known faults within close proximity to the landfill site are listed in Table 1. Fault data has been gathered from the GNS Active Faults Database website, and from Stirling, McVerry, et al (2012).

Active faults are defined by GNS and NZS 1170:2004 as faults with recurrence periods of less than 2000 years. On the basis of this definition the closest known active fault to the site is the Alpine Fault at a distance of approximately 240 km to the north-west, which is also classified as 'Major Fault' by NZS 1170:2004.

Table 1 Summary of known faults

Fault Name	Approximate Distance from Site	Maximum Likely Magnitude, Mw	Average Recurrence Interval (years)
Titri Fault	3 km NW	unknown	unknown
Akatore Fault	6 km SE	7.4	3,480
Maungatua Fault	10 km NW	unknown	unknown
North Taieri Fault	13 km N	unknown	unknown
Hyde Fault	47 km NNW	7.2	12,810
Billy's Ridge Fault	47 km NNE	7.1	9,470
Taieri Ridge Fault	50 km NNE	7.1	9,750
Fault #8894 (GNS)	50 km SW	unknown	unknown
Tuapeka Fault	56 km NW	unknown	unknown
Clifton Fault	56 km SW	unknown	5,000 - 10,000
Logan Burn Fault	60 km NW	unknown	3,500 - 5,000
Blue Mountain Fault	70 km W	7.3	12,690
Long Valley Fault	75 km NW	6.8	2,810
Gimmerburn Fault Zone	76 km N	7.2	5,850
Old Man Fault	85 km NW	7.4	362,150

Spylaw Fault	89 km W	7.3	12,440
Alpine Fault	240 km NW	8.1	340

2.3 Historic mining

Anecdotal evidence provided by a local resident indicates historic mining may have occurred in this area of Otago. A review of publically available data with regard to historic mining has been carried out. The following sources were consulted:

- Regional geological maps (Benson [1968], McKellar [1990], Bishop [1994], and Bishop & Turnbull [1996]);
- Historic aerial photographs, retrieved from the Retrolens historic imagery resource;
- Mindat.org: <u>www.mindat.org</u>
- NZ Mine Plans website: https://mineplans.nzpam.govt.nz
- Appendices to the Journals of the House of Representatives, 1890 Session I, Section C: https://atojs.natlib.govt.nz/cgi-bin/atojs?a=d&d=AJHR1890-l&e=10--1-0

The sources consulted suggest that the geological unit containing a potential valuable commodity in this part of Otago is the Taratu Formation (also known as Taratu Coal Measure on older geological maps). The main commodity mined in the region appears to be coal/lignite. In the vicinity of the proposed landfill, the Taratu Formation only occurs as a relatively thin layer at the top of the higher ridges on the eastern edge of the designation area and away from the proposed landfill footprint or appurtenant structures. Outcrops and boreholes associated with the Taratu Formation at the site do not show any lignite layers within these Taratu materials. It is considered highly unlikely that mining would have occurred within the designation area.

The only know abstraction on the site is a small borrow pit associated with the Taratu Formation deposits on the eastern edge of the designation area. Fulton Hogan have used this as a borrow site for gravel used to form logging tracks in the site vicinity.

2.4 Previous investigations

GHD is not aware of any previous investigations at the proposed landfill site, though an existing piezometer was found adjacent to the north-eastern site entrance.

3. Summary of Investigations

3.1 General

GHD carried out two phases of geotechnical investigations between 27 May to 17 June 2019 (Phase I), and between 24 October to 7 November 2019 (Phase II). McNeill Drilling was the drilling subcontractor used for the first phase, and Speight Drilling Ltd was the drilling subcontractor used for the second phase. The investigations comprised machine boreholes and test pits. All investigation works were carried out under the supervision of a GHD Engineering Geologist.

The second phase of investigations was designed to address gaps in the ground model data that were identified following the end of the first phase. Due to restrictions in place for the second phase (surveys of protected native lizards, and nesting native falcons), there were areas that could not be accessed for investigation and as a consequence a number of planned borehole and test pits were either re-located or not completed.

Materials recovered from the investigation were logged following the methods and procedures in the New Zealand Geotechnical Society's (NZGS) "Guideline for the Field Description of Soil and Rock for Engineering Purposes" (2005).

Shear vane testing was undertaken in accordance with NZGS's "Guideline for Hand Held Shear Vane Test" (2001). The peak and remoulded shear strength values shown on the attached logs (Appendix B) represent dial readings off the vane, adjusted using the BS 1377 calibration.

An investigation location plan is provided in Appendix A.

3.2 Machine boreholes

McNeill Drilling drilled ten machine boreholes (BH01 to BH10) between 27 May and 16 June 2019, using a truck mounted UDR600 rig. Speight Drilling Ltd drilled five machine boreholes (BH201 to BH203, BH209 and BH211) between 24 October and 7 November 2019, using a tracked, Maruka-mounted rig.

All boreholes were drilled from ground surface, with no hand or hydro-excavation carried out.

Core samples were retrieved by rotary drilling methods using PQ (96 mm diameter) triple tube drilling. BH201 and BH202 were cored to approximately 10.0 m bgl, and then wash drilled (no core recovered) to their termination depth.

Where practical, vane shear strengths were measured in the end of the core barrel with a hand held shear vane, using the techniques described in the NZGS guideline.

Table 2 summarises the details of the investigation machine boreholes. Borehole logs are provided in Appendix B.

Table 2 Summary of machine boreholes

Test ID	Site	Commenced	Completed	Total Depth	Termination	Piezometer	
100115	Location	Sommonoou	Completed	(m bgl)	Reason	1 10201110101	
BH01	Attenuation Basin Foundation	6/06/2019	6/06/2019	15.0	Target Depth	Yes, x 2	
BH02	Toe Bund Foundation	27/05/2019	28/05/2019	15.0	Target Depth	Yes, x 2	
BH03	Toe Bund Foundation	28/05/2019	29/05/2019	20.0	Target Depth	Yes, x 2	
BH04	Toe Bund Foundation	6/06/2019	7/06/2019	15.0	Target Depth	Yes, x 2	
BH05	Central Ridge	29/05/2019	30/05/2019	30.0	Target Depth	Yes, x 2	
BH06	Southwest Ridge	13/06/2019	14/06/2019	30.0	Target Depth	No	
BH07	Central Ridge	30/05/2019	4/06/2019	20.0	Target Depth	Yes, x 2	
BH08	Southeast Perimeter	11/06/2019	11/06/2019	20.0	Target Depth	No	
BH09	Western Perimeter	12/06/2019	12/06/2019	16.5	Target Depth	Yes, x 1	
BH10	Northeast Ridge	04/06/2019	05/06/2019	20.0	Target Depth	Yes, x 2	
BH201	Southern Perimeter	28/10/2019	01/11/2019	61.0	Target Depth	Yes, x 1	
BH202	Southern Perimeter	2/11/2019	4/11/2019	60.6	Target Depth	Yes, x 1	
BH203	Southwest Perimeter	7/11/2019	7/11/2019	19.7	Target Depth	No	
BH204	Western Ridge	Not completed					
BH209	Western Perimeter	24/10/2019	24/10/2019	10.0	Target Depth	No	
BH210	Central gully base		Not completed				
BH211	Eastern Gully Base	4/11/2019	6/11/2019	25.2	Target Depth	Yes, x2	

3.3 Piezometers

Piezometers were installed in selected boreholes to allow for permeability testing and follow-up groundwater measurements.

Groundwater was not encountered in BH06, BH08, BH203 or BH209 - therefore, no piezometers were installed.

Piezometers were typically nested, with two 32 mm PVC pipes installed in each borehole (except BH09, BH201 and BH202). The pipe was slotted over the targeted screened zone and surrounded by a coarse sand pack. Bentonite seals were placed above and below each screened zone.

The piezometer details were provided by GHD hydrogeologists to suit the conditions encountered in each borehole. Table 3 summarises the piezometer details.

Table 3 Summary of piezometer details

Borehole ID	Piezometer ID	Screened From (m bgl)	Screened To (m bgl)
BH01	BH01a	2.0	4.0
БПИΙ	BH01b	8.0	9.0
BH02	BH02a	3.0	5.0
БПО2	BH02b	7.0	9.0
BH03	ВН03а	8.3	10.3
DI 103	BH03b	13.0	15.0
BH04	BH04a	4.5	6.5
БП04	BH04b	12.0	16.0
BH05	ВН05а	14.0	16.0
DI 103	BH05b	19.0	22.0
BH07	ВН07а	11.5	14.5
ыю	BH07b	16.8	19.8
BH09	ВН09а	14.5	16.5
BH10	BH10a	13.5	15.5
БПТО	BH10b	18.0	20.0
BH201	BH201	54.0	60.0
BH202	BH202	54.0	60.0
BH211	BH211a	8.5	11.5
DΠZΙΙ	BH211b	22.0	25.0

3.4 Test pits

Under the supervision of GHD, Fulton Hogan excavated eleven test pits between 27 May 2019 and 12 June 2019, using a 22 tonne excavator.

Where practical and safe, vane shear strengths were measured in the base and sides of the excavation with a hand held shear vane, using the techniques described in the NZGS guideline.

Table 4 summarises the details of the test pits. Test pit logs are provided in Appendix B.

Table 4 Test pit summary

Test Pit ID	Site Location	Excavation Date	Termination Depth (m bgl)	Termination Reason	Materials Encountered
TP01	Manuka gully (stockpile area)	12/06/2019	2.5	Target Depth	Alluvium, HW rock, siltstone
TP02	Manuka gully (stockpile area)	12/06/2019	2.6	Target Depth	Colluvium, alluvium, buried topsoil, siltstone
TP03	Manuka gully (stockpile area)	12/06/2019	2.0	Target Depth	Alluvium, siltstone
TP05	Southwest gully base	13/06/2019	3.3	Target Depth	Colluvium, HW rock, siltstone
TP06	Gully east of central ridge	13/06/2019	2.5	Target Depth	Alluvium, siltstone
TP07	Southwest gully base	28/05/2019	2.5	Target Depth	Loess, siltstone, breccia
TP08	Gully between southern ridges	28/05/2019	4.5	End of reach	Fill, buried topsoil, loess
TP09	Southeast gully outflow	13/06/2019	3.0	Target Depth	Slip debris, buried topsoil, alluvium, sandstone
TP10	Future laydown area	10/06/2019	3.6	Target Depth	Loess, HW siltstone
TP11	Future laydown area	10/06/2019	3.8	Target Depth	Loess, HW siltstone
TP12	Future laydown area	10/06/2019	4.4	Target Depth	Fill, buried topsoil, loess, HW siltstone

*Note: TP04 was deleted from the field programme

3.5 Bulk samples

Bulk samples of loess and completely weathered (CW) rock were collected from shallow test pits on 7 and 13 November 2019. The shallow test pits were excavated by Fulton Hogan, with a 20 tonne excavator. The bulk sample details are summarised in Table 5.

Table 5 Bulk sample summary

Bulk Sample ID	Sample Date	Sample Depth	Sampled Material
BS01	7/11/2019	0.5 m bgl	Loess
BS02	7/11/2019	1.0 m bgl	Loess / CW rock
BS03	7/11/2019	0.7 m bgl	Loess
BS04	7/11/2019	1.5 m bgl	Loess / CW rock
BS05	13/11/2019	0.6 m bgl	Loess
BS06	13/11/2019	1.0 m bgl	Loess / CW rock
BS07	13/11/2019	0.5 m bgl	Loess
BS08	13/11/2019	0.6 m bgl	Loess
BS09	13/11/2019	1.2 m bgl	Loess / CW rock
BS10	13/11/2019	0.7 m bgl	Loess
BS11	13/11/2019	1.3 m bgl	Loess
BS12	13/11/2019	0.4 m bgl	Loess
BS13	13/11/2019	1.2 m bgl	Loess
BS14	13/11/2019	0.5 m bgl	Loess
BS15	13/11/2019	1.1 m bgl	Loess / CW rock

3.6 Groundwater

To monitor whether the groundwater had returned to a static level after drilling, manual groundwater measurements were taken on several occasions during the field investigation programme. This was because, groundwater levels noted during or immediately after drilling are typically in an elevated state due to the use of water during the drilling process, and therefore may not represent a static groundwater level. Groundwater levels may also fluctuate seasonally.

At the completion of drilling BH01, prior to piezometer installation, the drillers observed artesian groundwater, in that groundwater was flowing out of the top of the borehole; the subsequent level measured in BH01a was also above ground level. However, since installation, the integrity of the shallow piezometer (BH01a) has been compromised and it is no longer possible to record a groundwater level, but groundwater can be observed leaking from around the edge of the installation indicating that artesian groundwater is present.

BH201 and BH202 were wash drilled to approximately 60 m to ensure interception of the groundwater table along the southern boundary.

An existing piezometer (comprising a single 50 mm PVC pipe, in a 100 mm diameter borehole) was discovered adjacent to the northeast site access. No information about this piezometer (drill date, target, etc.) is available. The base of this piezometer was measured at 42.50 m bgl.

The groundwater level (GWL) at the completion of drilling/excavation, and the most recent measurements are presented in Table 6.

Table 6 Summary of measured groundwater levels

Piezometer ID	GWL at End of Drilling (Date)	Latest GWL Measurement (25/11/19)	
BH01a	NR*	Piezometer compromised	
BH01b		0.02 m bgl	
ВН02а	0.75 m bgl (28/05/19) (measured pre-install)	-0.06 m bgl (above ground level)	
BH02b		0.745 m bgl	
ВН03а	3.95 m bgl (29/05/19) (measured pre-install)	4.19 m bgl	
BH03b		4.24 m bgl	
ВН04а	2.0 m bgl (07/06/19)	1.79 m bgl	
BH04b	(measured pre-install)	4.61 m bgl	
ВН05а	NR	Dry	
BH05b		Dry	
ВН07а	NR	Dry	
BH07b		Dry	
ВН09а	13.9 m bgl (12/06/19)	14.58 m bgl	
BH10a	10.2 m bgl (07/06/19)	Dry	
BH10b	(measured pre-install)	Dry	
NE Gate (existing)	NA**	26.07 m bgl	
TP02	0.4 m bgl (12/06/19)	NFM***	
TP03	1.2 m bgl (12/06/19)	NFM	
TP05	1.9 m bgl (13/06/19)	NFM	
TP07	1.4 m bgl (28/05/19)	NFM	
BH201	NR	46.455 m bgl	
BH202	NR	47.55 m bgl	
BH211a	NR	2.81 m bgl	
BH211b	NR	13.0 m bgl	

^{*}NR = Not recorded

3.7 Investigation coordinates

Positions for machine boreholes and test pits were recorded by Woods Surveying. Coordinates are presented in the North Taieri Circuit (2000) projection, and elevation RLs are presented in terms of New Zealand Vertical Datum (2016).

^{**}NA = Not available

^{***}NFM = No further measurements recorded

BH06, BH08 and all test pits were picked up with a cluster of points around the pads. The coordinates for the most central pickup point has been selected to represent the test location. These points are marked with an asterisk (*) in the table below.

TP05, TP07, TP08, and all of the Phase II investigations have not yet been surveyed. Coordinates for these test locations have been estimated from Google Earth, and are marked with a double asterisk (**) in the table below. Elevations for these points have been estimated from the Stantec contour map presented in Appendix A.

Table 7 summarises the position coordinates for all test locations.

Table 7 Summary of test location positions

Test Location ID	Easting	Northing	Elevation (m RL)
BH01	396465.49	788214.52	96.01
BH02	396358.59	788022.89	97.41
BH03	396428.38	787998.34	107.48
BH04	396563.60	788063.75	108.15
BH05	396459.76	787862.12	129.50
BH06	396168.25*	787593.98*	149.75*
BH07	396493.65	787671.87	139.73
BH08	396809.71*	787700.67*	143.89*
BH09	395951.84	788050.36	132.80
BH10	396788.26	788118.50	139.07
BH201	396596**	787540**	144**
BH202	396181**	787498**	144**
BH203	395779**	787672**	182**
BH209	395775**	788148**	132**
BH211	396598**	787965**	107**
TP01	395988.85	788077.23	121.20
TP02	396103.50	788056.91	110.40
TP03	396262.16	788048.16	102.61
TP05	396281**	787868**	105**
TP06	396585.70	787800.45	108.24
TP07	396182**	787790**	120**
TP08	396303**	787682**	115**

Test Location ID	Easting	Northing	Elevation (m RL)
TP09	396577.97	787947.86	101.04
TP10	396820.11	788079.25	140.74
TP11	396907.03	788032.98	141.24
TP12	396956.93	787986.46	142.28
BS01 / BS02	396149**	787571**	150**
BS03 / BS04	396202**	787994**	135**
BS05 / BS06	396537**	787504**	152**
BS07	396500**	787616**	141**
BS08 / BS09	396490**	787771**	130**
BS10 / BS11	396441**	787922**	119**
BS12 / BS13	396382**	787582**	132**
BS14 / BS15	396366**	787738**	120**

3.8 Laboratory testing

3.8.1 Phase I test schedule

Selected samples obtained from Phase I of the geotechnical investigation were tested at the IANZ accredited Central Testing Services laboratory in Alexandra. Table 8 summarises the laboratory testing programme undertaken.

Table 8 Summary of geotechnical laboratory testing

Sample Source	Depth From (m bgl)	Depth To (m bgl)	Atterberg Limits - NZS 4402:1986, Test 2.2, 2.3 & 2.4	Particle Size Distribution - NZS 4402:1986, Test 2.8.1 & 2.8.4.	NZ Standard Compaction - NZS 4402:1986, Test 4.1.1	Pinhole Dispersion and Crumb Test - ASTM D4647 & ASTM D6572	Triaxial Permeability - ASTM D5084
TP10	2.2	3.6	x	x	x	x	X
BH05 BH07 (combined)	0.0	1.2 1.4	X	х	X	X	х

3.8.2 Phase II test schedule

On completion of Phase I of the geotechnical investigation a further suite of samples were tested by Central Testing Services in Alexandra. Two suites of lab testing were undertaken with the following purposes:

- To determine the suitability of the Loess soils for either lime or bentonite stabilisation as a method of reducing erodability / dispersivity. Eight (8) bulk samples were combined, and divided into four sub-samples. The four sub-samples were then tested as outlined in Table 9.
- To determine suitability of CW-HW Henley Breccia Soils for use as engineered fill beneath the landfill liner. Two samples were tested as outlined in Table 10.

Table 9 Summary of geotechnical laboratory testing for stabilised soils.

Sample Source	Sub-sample Number	Atterberg Limits - NZS 4402:1986, Test 2.2, 2.3 & 2.4 (Natural Soil)	Lime demand test (NSW Transport; Roads & Maritime Services Test Method T144 (Not IANZ Accredited))	Atterberg Limits - NZS 4402:1986, Test 2.2, 2.3 & 2.4 (Stabilised Soil)	NZ Standard Compaction - NZS 4402:1986, Test 4.1.1	Shear Strength – Shear Vane – NZGS 2001	Pinhole Dispersion and Crumb Test - ASTM D4647 & ASTM D6572
BS01 (0.5m) BS03 (0.7m)	Sub-sample #1	X	X	X (Lime Stabilised – 1 day curing)	X	X	Х
BS07 (0.5m) BS08 (0.6m)	Sub-sample #2	Х	×	X (Lime Stabilised – 7 day curing)	X	X	Х
BS10 (0.7m) BS11 (1.3m)	Sub-sample #3	Х		X (Bentonite Stabilised – 1 day curing)	X	X	X
BS12 (0.4m) BS13 (1.2m)	Sub-sample #4	X		X (Bentonite Stabilised- 7 day curing)	X	X	X

Table 10 Summary of geotechnical laboratory testing for engineered fill

Sample Source	Depth From (m bgl)	Depth To (m bgl)	Atterberg Limits - NZS 4402:1986, Test 2.2, 2.3 & 2.4	NZ Standard Compaction - NZS 4402:1986, Test 4.1.1	Unconfined Compressive Strength of Soil, NZS 4402:1986: Test 6.3.1
BH05	2.7	7.2	X	X	X
BH10	2.4	7.0	X	X	X

3.8.3 Phase I test results

Table 11 to Table 16 summarise the results of the laboratory testing outlined in Section 3.8.1. Detailed laboratory test results are presented in Appendix C.

Table 11 Summary of particle size distribution test results (NZS 4402:1986, Test 2.8.1 and 2.8.4)

		Percent Passing (%)					
Sample Source	Geological Unit	Gravel (2 to 60 mm)	Sand (0.06 to 2 mm)	Silt (0.002 to 0.06 mm)	Clay (<0.002 mm)		
TP10	Loess	6	13	72	9		
BH05/BH07	Loess	1	10	60	29		

Table 12 Summary of Atterberg limit test results (NZS 4402:1986, Test 2.1, 2.2, 2.3 and 2.4)

Sample Source	Geological Unit	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index
TP10	Loess	15.5	39	28	11
BH05/BH07	Loess	23.6	42	23	19

Table 13 Summary of NZ standard compaction test results (NZS 4402:1986, Test 2.1 and 4.1.1)

Sample Source	Geological Unit	Water Content - As Received (%)	Maximum Dry Density (t/m³)	Optimum Water Content (%)
TP10	Loess	15.5	1.71	16.0
BH05/BH07	Loess	23.6	1.70	17.5

Table 14 Summary of pinhole dispersion test results (ASTM D4647-13e1)

Sample Source	Geological Unit	Elapsed Time (min)	Flow Rate (ml/s)	Outflow Colour	Hole Diameter Pre-test	Hole Diameter Post-test	Classification
		1	0.25	Slightly dark		~2.0 mm	
TP10	TP10 Loess	5	0.27	Moderately dark	1.0 mm	(4 mm at exit)	Dispersive (D)
		10	0.31	Dark			
		1	0.25	Barely visible			
BH05 / BH07	5	0.27	Moderately dark	1.0 mm	~2.0 mm	Dispersive (D)	
		10	0.49	Very dark			

Table 15 Summary of crumb test results (ASTM D6572-13e2 (Method B))

Sample Source	Geological Unit	Elapsed Time	Estimated Slaking	Observations	Crumb Test Classification	
		2 min	~50%	No colloidal cloud		
TP10 Lo	Loess	1 hr	~100%	Dense colloidal cloud over	Grade 4 (Highly Dispersive)	
		6 hr	~100%	Moderate colloidal		
		2 min	~20%	No colloidal cloud		
BH05/BH07	Loess	1 hr	~100%	Dense colloidal cloud over	Grade 4 (Highly Dispersive)	
		6 hr	~100%	Dense colloidal cloud over	= :	

Table 16 Summary of triaxial permeability test results (ASTM D5084-16a)

Sample Source	Geological Unit	Cell Pressure (kPa)	Initial Permeability (m/s)	Final Permeability (m/s)
TP10	Loess	610	2.9 x 10 ⁻⁸	3.2 x 10 ⁻⁸
TP10	Loess	727	2.7 x 10 ⁻⁸	2.8 x 10 ⁻⁸
BH05/BH07	Loess	460	1.7 x 10 ⁻⁹	2.1 x 10 ⁻⁹
BH05/BH07	Loess	527	5.6 x 10 ⁻¹⁰	5.3 x 10 ⁻¹⁰

3.8.4 Phase II test results

Table 17 to Table 21 summarise the results of the laboratory testing outlined in Section 3.8.2. Detailed laboratory test results are presented in Appendix C.

Table 17 Summary of Atterberg limit test results (Natural Soils)

Sample	Geological Unit	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index
Sub-sample #1	Loess (untreated)	25	41	25	16
Sub-sample #2	Loess (untreated)	25	41	25	16
Sub-sample #3	Loess (untreated)	25	41	25	16
Sub-sample #4	Loess (untreated)	25	41	25	16

Table 18 Summary of lime demand test results

Sample	Geological Unit	pH 0 % added Lime	pH 1 % added Lime	pH 2 % added Lime	pH 3 % added Lime	pH 4 % added Lime	pH 5 % added Lime	pH 6 % added Lime	pH 7 % added Lime
Sub-sample #1	Loess (untreated)	5.12	10.15	12.12	12.42	12.46	12.49	12.48	12.42
Sub-sample #1	Loess (untreated)	5.16	10.31	12.08	12.5	12.55	12.56	12.55	12.55

Table 19 Summary of Atterberg limit test results (Henley Breccia Formation)

Sample	Geological Unit	Liquid Limit	Plastic Limit	Plasticity Index
BH05 2.7 – 7.2 m	Henley Breccia – CW Siltstone	41	25	16
BH10 2.4 – 7.0 m	Henley Breccia – CW Siltstone / Sandstone	37	23	14

Table 20 Summary of NZ standard compaction test results (Henley Breccia Formation)

Sample Source	Geological Unit	Maximum Dry Density (t/m³)	Optimum Water Content (%)
BH05 2.7 – 7.2 m	Henley Breccia – CW Siltstone	1.76	16.0
BH10 2.4 – 7.0 m	Henley Breccia – CW Siltstone / Sandstone	1.85	14.0

Table 21 Summary of unconfined compressive strength of re-compacted samples (Henley Breccia Formation)

Sample Source	Geological Unit	Unconfined Compressive Strength (kPa)
BH05 2.7 – 7.2 m	Henley Breccia – CW Siltstone	100
BH10 2.4 – 7.0 m	Henley Breccia – CW Siltstone / Sandstone	93

4. References

The following documents have been consulted in preparation of the guideline:

- Bishop, D.G. 1994: Geology of the Milton area. Scale 1:50,000. Institute of Geological & Nuclear Sciences geological map 9. 1 sheet + 32 p. Institute of Geological & Nuclear Sciences Ltd, Lower Hutt, New Zealand.
- Bishop, D.G., Turnbull, I.M. (compilers) 1996. Geology of the Dunedin Area. Institute of Geological and Nuclear Sciences 1:250,000 geological map 21. 1 sheet + 52 p. Lower Hutt, New Zealand: Institute of Geological and Nuclear Sciences Limited.
- GNS Active Faults Database, http://maps.gns.cri.nz/website/af/viewer.htm
- New Zealand Geotechnical Society (2001): Guideline for Hand Held Shear Vane Test.
- New Zealand Geotechnical Society (2005): Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes.
- Stantec (not dated): Smooth Hill Site Plan. Reference 80510415-01-001-S10, Revision A
- Stirling, McVerry, et al (2010): National Seismic Hazard Model for New Zealand: 2010
 Update. Bulletin of the Seismological Society of America, Vol. 102, No. 4, pp. 1514 1542, August 2012.

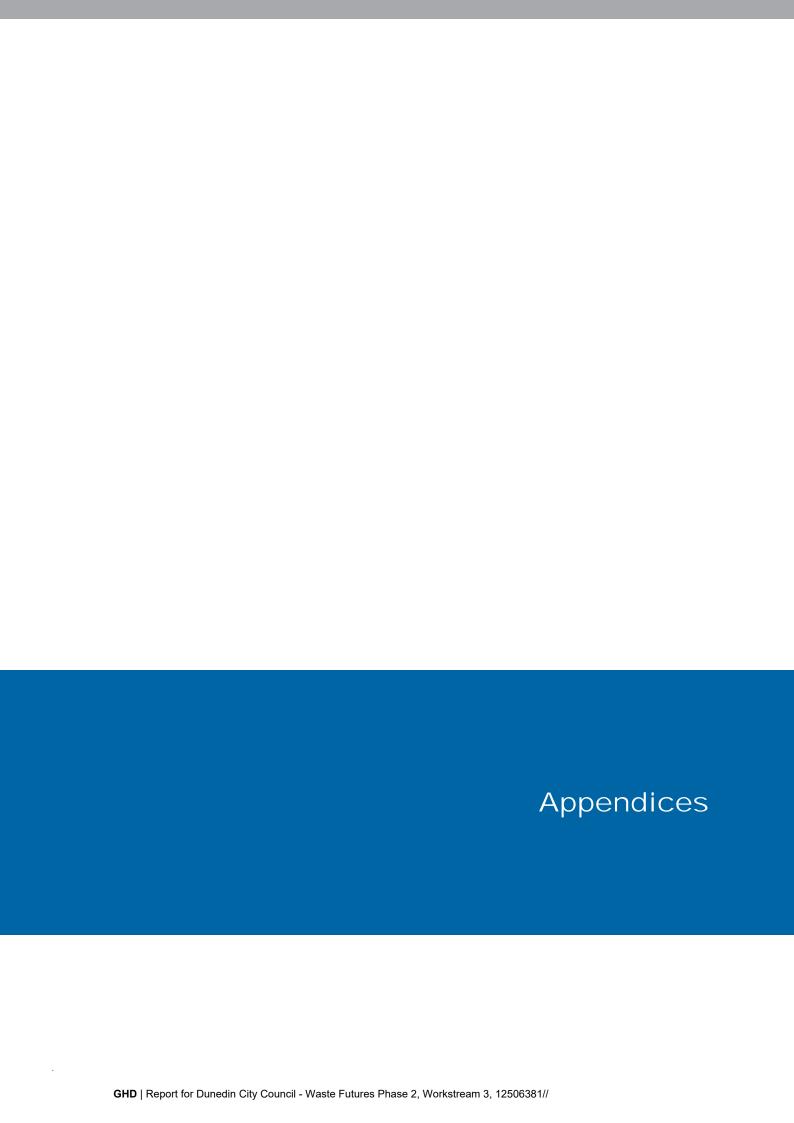
5. Limitations

This report has been prepared by GHD for Dunedin City Council) and may only be used and relied on by the Client for the purpose agreed between GHD and the Client as set out in Section 1 of this report.

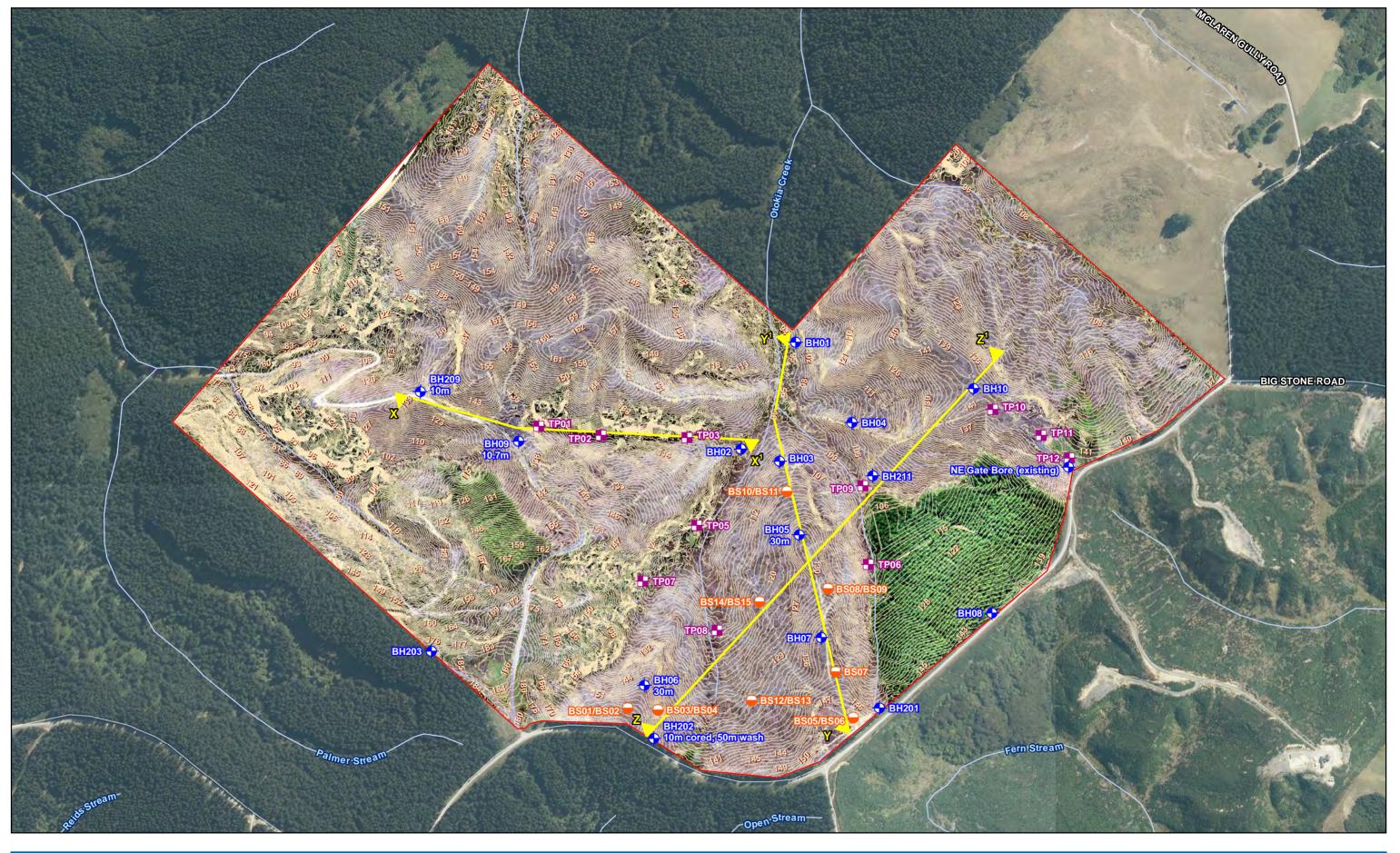
GHD otherwise disclaims responsibility to any person other than the Client and Council officers, consultants, the hearings panel and submitters associated with the resource consent and notice of requirement process for the Smooth Hill Landfill Project arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

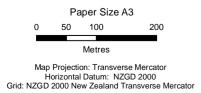
The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.


The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Client and others who provided information to GHD (including Government authorities)], which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.


The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.


Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of vegetation and topography. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

Appendix A - Plans

Site boundary Cross section location

Waterways

Bulk sample location

Contours (1m)

Dunedin City Council Smooth Hill Landfill Geotechnical and Hydrogeological Job Number | 12506381 Revision

17 Aug 2020

Investigation Location Plan

Appendix B – Borehole and Test Pit Logs and Photographs

Project : Smooth Hill Landfill Consenting Hole No. : BH01a Client : Dunedin City Council : 1 of 2 Sheet Site : Dam Foundation Hole Length : 15.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 6/06/2019 Completed: 6/06/2019 Logged : MF Processed : HB Easting: 396465.49 Northing: 788214.52 System: TAIETM2000 RL: 96.01 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Strength (MPa) Flush Return **Material Description** Estimated Number / Method Casing Depth (SCR RQD Gravelly SILT; trace fine to coarse sand, trace clay; light yellow-brown and orange-brown. Stiff, moist, low plasticity; gravel, fine to medium, sub-angular to sub-rounded or quartz `o× and schist (COLLUVIUM) POT × 77 o× 1.20 - 2.70 m: CORELOSS Possible soft material comprising slip base & stream alluvium POT 20 Silty CLAY, trace fine sand; grey and orange-brown. Soft to firm, moist, high plasticity (ALLUVIUM) S-F Silty fine to coarse SAND, trace organics; grey. Poorly graded ALLUVIUM 3.00 - 3.90 m: CORELOSS (inferred depth) POTT 0 Slightly weathered, light grey fine to coarse SANDSTONE; POT moderately strong to strong, no defects (HENLEY BRECCIA) × × × × × × Slightly weathered, grey SILTSTONE; very weak to weak no Slightly weathered, light grey fine to coarse SANDSTONE; very weak to weak, no defects GHD - NZGD.GLB || Date: 7 August 2019 POT 5.25 - 5.28 m: black organic-rich layer 5.28 - 5.38 m: moderately strong to strong 5.38 - 6.00 m: very weak to weak 6.00 m: moderately strong to strong, closey spaced black organic-rich laminates BRECCIA 100 POT Slightly weathered, light yellow-brown and red-brown SILTSTONE; very weak to weak, no defects 6.90 - 7.05 m: light grey and red-brown HILL.GPJ || Library: **JENLEY** 7.05 - 7.30 m: light grey with purple-brown layersvery closely spaced purple interlaminates 7.30 - 7.40 m: gravelly fine to medium SANDSTONE; gravel is fine Slightly weathered, light grey with purple-brown laminates, fine to medium SANDSTONE; very weak to weak, no defects 12506381 GINT LOGS SMOOTH POT 8.30 - 9.00 m: CORELOSS (possible sandy gravel) Slightly weathered, grey and brown SILTSTONE; very weak to weak, no defects 100 PQTT 100 Slightly weathered, light grey with purple-brown laminates fine to medium SANDSTONE; very weak to weak, no defects || Project: Inclination: Vertical Orientation: Notes and Comments:

GENERAL_LOG ≘ Report I

End of Hole @ 15.00m. Target Depth. Ground stripped by ~0.6 m, including all topsoil to construct drill pad. Piezo installed

Refer to explanation sheets for abbreviation and symbols

Ground Water Level Reading (mbgl) Contractor: McNeills Date Time

Spacing (mm)

Defect

Water level

0

Equipment: UDR600 (truck mounted)

Shear Vane Id:

Project : Smooth Hill Landfill Consenting Client : Dunedin City Council Site : Dam Foundation Job Number: 12506381 Commenced: 6/06/2019 Completed: 6/06/2019 Report ID: GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL GPJ || Library: GHD - NZGD.GLB || Date: 7 August 2019

Hole No. : BH01a Sheet : 2 of 2

Hole Length : 15.00m Scale @ A4 : 1:50

Logged : MF

Easting: RL: 96.0		Commenced: 6/06/2019	Com	plete	ed: 6/	06/20)19		╛┖	ogge	d		: M	F				
RL: 96.0	39646	85.49 Northing: 788214.52	Syste	em: ¯	TAIE	TM20	000		P	roces	ssed		: HE	3				
)1	Datum: NZVD2016				1			<u> c</u>	heck	ed		: Jŀ	IS				
				nit	uo			nple			(9)							
Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Number / Type	Result	Casing	Method	Flush Return (%)	Weathering	Estimated	T S R	CCR SCR RQD (%)	。 。Spacing (mm)	Instrumentation Installation	Water level
11-		Slightly weathered, light grey with purple-brown laminate to medium SANDSTONE; very weak to weak, no defects (continued from layer starting at 9.5m) 10.50 - 11.30 m: very thinly bedded	es fine s							тт Ротт		SW		1 1 1	100 100 100 97			
12 -		Unweathered, moderately thickly bedded, grey BRECCIA moderately strong to strong, no defects. Clasts; fine to medium, angular to sub-rounded; quartz and schist; ma supported, coarse sand matrix 11.70 - 12.20 slighlty gravelly fine to coarse gravel SANDSTONE 12.20 m: medium to coarse gravel size clasts, clast supported.	trix	CCIA						РОТТ					97 97			
13 -		12.80 m: fewer clasts, fine to medium gravel size, matrix supported 13.10 m: weak to moderately strong; fine to coarse grave clasts, clast supported; moderately well indurated	(HENLEY BRECCIA						PQTT		MU		1	100 100 100			
14-		13.50 - 15.00 m: CORELOSS Driller unable to recover core - slipping out of barrel.							122mm	PQTT			-		0 0 0			
16 —		End of Hole @ 15.00m,Target Depth.																
17																		
10																		
19 -	- 1																	
18 7			es and Comments: Inclination: Vertical Ori					1	1		1 1		- 1					
-	4 C:	manta.	Inclinati	on· \	/ertic	al		Ori	entat	ion.			Gr	Olina	d Wa	ter I ev	el	
otes and		F						Ori	ientat	ion:			-			ter Lev	Hole de	pth
otes and	le @ 15	00m, Target Depth.	Contrac	tor: N	McNe	ills				ion:			Gr		d Wat			pth
otes and	le @ 15 ripped b	F	Contrac	tor: N	McNe UDR	ills	uck n	Ori		ion:		1 1	-			Reading	Hole de	pth
otes and	le @ 15 ripped b 9.	00m, Target Depth.	Contrac	tor: N	McNe UDR	ills	uck n			ion:			-			Reading	Hole de	pth

Project : Smooth Hill Landfill Consenting Hole No. : BH01b Client : Dunedin City Council Sheet · 1 of 2 Site : Dam Foundation Hole Length : 15.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 6/06/2019 Completed: 6/06/2019 Logged : MF Processed : HB Easting: 396465.49 Northing: 788214.52 System: TAIETM2000 Checked RL: 96.01 Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Strength (MPa) Flush Return **Material Description** Estimated Number / Method Casing Depth (Gravelly SILT; trace fine to coarse sand, trace clay; light yellow-brown and orange-brown. Stiff, moist, low plasticity; gravel, fine to medium, sub-angular to sub-rounded or quartz `o× and schist (COLLUVIUM) POT × o× 1.20 - 2.70 m: CORELOSS Possible soft material comprising slip base & stream alluvium POT Silty CLAY, trace fine sand; grey and orange-brown. Soft to firm, moist, high plasticity (ALLUVIUM) S-F Silty fine to coarse SAND, trace organics; grey. Poorly graded ALLUVIUM 3.00 - 3.90 m: CORELOSS (inferred depth) POTT Slightly weathered, light grey fine to coarse SANDSTONE; POT moderately strong to strong, no defects (HENLEY BRECCIA) × × × × × × Slightly weathered, grey SILTSTONE; very weak to weak no Slightly weathered, light grey fine to coarse SANDSTONE; very weak to weak, no defects GHD - NZGD.GLB || Date: 7 August 2019 POT 5.25 - 5.28 m: black organic-rich layer 5.28 - 5.38 m: moderately strong to strong 5.38 - 6.00 m: very weak to weak 6.00 m: moderately strong to strong, closey spaced black organic-rich laminates BRECCIA POT Slightly weathered, light yellow-brown and red-brown SILTSTONE; very weak to weak, no defects 6.90 - 7.05 m: light grey and red-brown 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: **JENLEY** 7.05 - 7.30 m: light grey with purple-brown layersvery closely spaced purple interlaminates 7.30 - 7.40 m: gravelly fine to medium SANDSTONE; gravel is fine Slightly weathered, light grey with purple-brown laminates, fine to medium SANDSTONE; very weak to weak, no defects POT 8.30 - 9.00 m: CORELOSS (possible sandy gravel) Slightly weathered, grey and brown SILTSTONE; very weak to weak, no defects PQTT Slightly weathered, light grey with purple-brown laminates fine to medium SANDSTONE; very weak to weak, no defects

|| Project: GENERAL_LOG ≘ Refer to explanation sheets for abbreviation and symbols

Report I

Ground Water Level Inclination: Vertical Orientation: Notes and Comments: End of Hole @ 15.00m, Target Depth. Contractor: McNeills Date

Looks like drill pad on slip debris pile. Scarp above (east) of pad. Ground stripped ~0.6 m, including all topsoil. Piezo installed 10/06/2019.

Equipment: UDR600 (truck mounted)

Spacing (mm)

Defect

SCR RQD

77

20

0

100

Time

Reading (mbgl)

Water level

Shear Vane Id:

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Dam Foundation

Job Number: 12506381

Commenced: 6/06/2019 Completed: 6/06/2019

: BH01b Hole No.

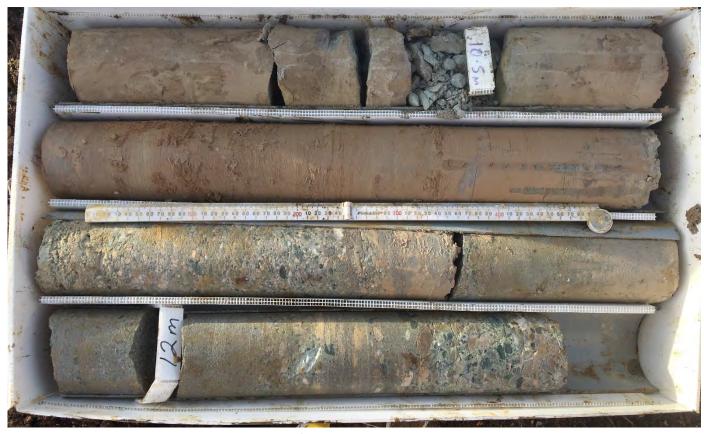
Sheet : 2 of 2 Hole Length : 15.00m Scale @ A4 : 1:50

Logged : MF

RL	.: 96.0)1 	Datum: NZVD2016		l			Sai	mple	c	heck	ed	П	: JH	S 		
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density			Casing	Method	Flush Return (%)	Weathering	***Estimated	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation
- - -	-	0	Slightly weathered, light grey with purple-brown laminat to medium SANDSTONE; very weak to weak, no defect (continued from layer starting at 9.5m) 10.50 - 11.30 m: very thinly bedded	es fine s		2	0 &	ΖĖ	~	S	PQTT	25 50 75	SW W	W W W W W W W W W W W W W W W W W W W	100 100 100	200 801	
82	11 - 12 - 14		Unweathered, moderately thickly bedded, grey BRECCI moderately strong to strong, no defects. Clasts; fine to		_						PQTT				97 97 97		
- <u>\$</u>	12 -		medium, angular to sub-rounded; quartz and schist; masupported, coarse sand matrix 11.70 - 12.20 slighlty gravelly fine to coarse gravel SANDSTONE 12.20 m: medium to coarse gravel size clasts, clast sup		RECCIA												
- 88	13-		12.80 m: fewer clasts, fine to medium gravel size, matri supported 13.10 m: weak to moderately strong; fine to coarse grav		HENLEY BRECCIA						PQTT		NN		100 100 100		
- 185	13.5		clasts, clast supported; moderately well indurated 13.50 - 15.00 m: CORELOSS Driller unable to recover core - slipping out of barrel.											J	0		
										122mm	PQTT				0 0		
- -			End of Hole @ 15.00m,Target Depth.														
- 08	16 -																
1 62	17 -																
- 82	18 —																
- 12	19 —																
- - -																	
Not	es an	ıd Com	iments:	Inclinati	ion: \	l ∕ertic	ı al	<u> </u>	Or	ientat	ion:			Gro	ound W	l ater Lev	rel
En	d of Ho	le @ 15	.00m, Target Depth. d on slip debris pile. Scarp above (east) of pad.	Contrac				1						Date	e Time	Reading (mbgl)	Hole depth (mbgl)
Gro	ound st	ripped ~	a on slip debris pile. Scarp above (east) of pad. 0.6 m, including all topsoil. Piezo installed 10/06/2019.	Equipm Shear \			500 (tr	uck r	nounted)							

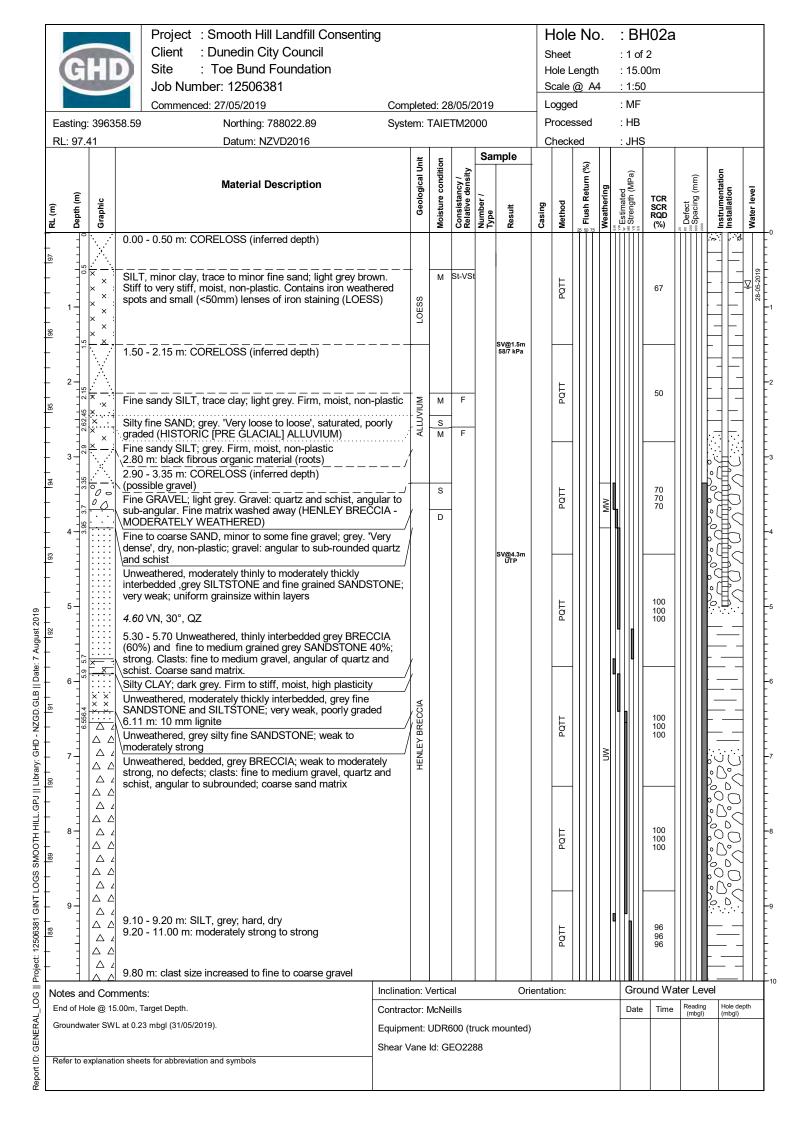
Project	Smooth Hill Landfill Consenting						
Client	Dunedin City Council						
Job number	12506381	Page 1 of 3					
Borehole ID	BH01						

Box 1 of 5: 0.00 m to 4.80 m


Box 2 of 5: 4.80 m to 7.20 m

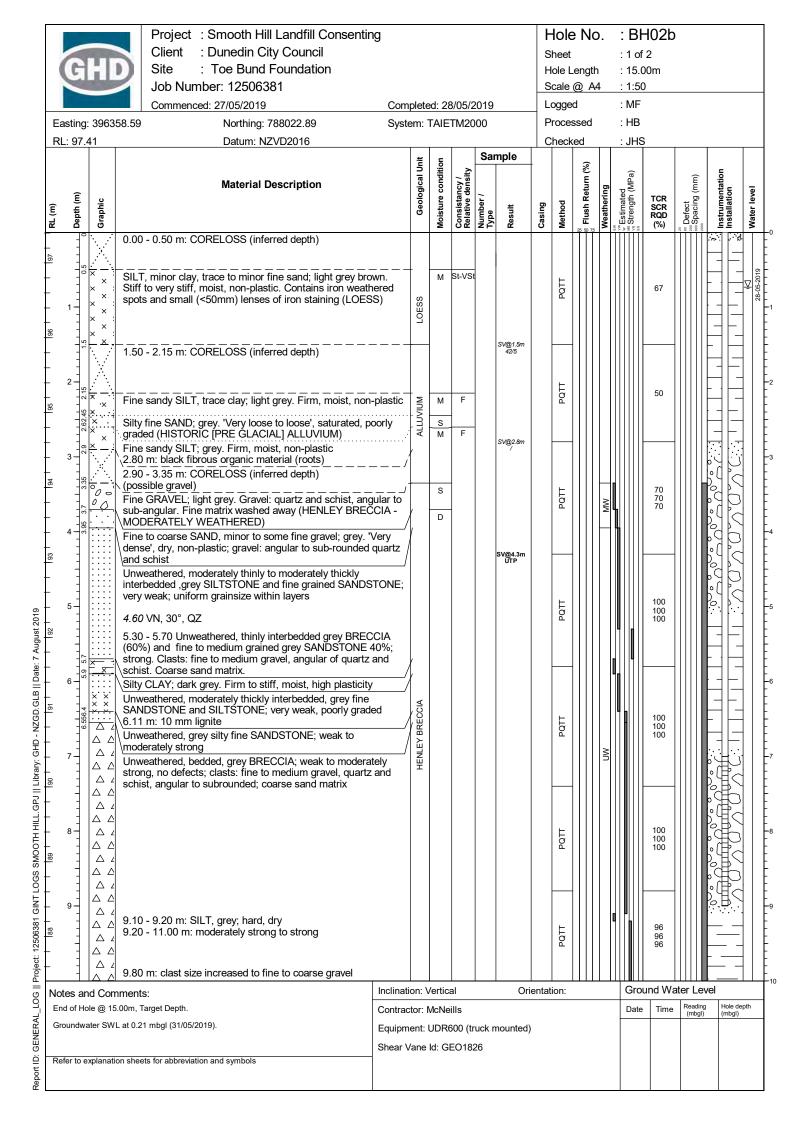
Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 2 of 3				
Borehole ID	BH01					

Box 3 of 5: 8.20 m to 10 .20 m


Box 4 of 5: 10.20 m to 12.40 m

Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 3 of 3				
Borehole ID	BH01					

Box 5 of 5: 12.40 m to 15.00 m (EOH)


Project : Smooth Hill Landfill Consenting Hole No. : BH02a Client : Dunedin City Council Sheet : 2 of 2 Site : Toe Bund Foundation : 15.00m Hole Length Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 27/05/2019 Completed: 28/05/2019 Logged : MF Processed : HB Easting: 396358.59 Northing: 788022.89 System: TAIETM2000 RL: 97.41 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Strength (MPa) Flush Return **Material Description** Estimated TCR SCR RQD Depth (m) Number / Method Casing Δ Unweathered, bedded, grey BRECCIA; weak to moderately strong, no defects; clasts: fine to medium gravel, quartz and μğ ΔΔ schist, angular to subrounded; coarse sand matrix (continued Δ from layer starting at 6.6m) ΔΔ \triangle Δ POT Δ 11.00 - 11.80 m: weak to moderately strong Δ Δ Δ Δ 11.80 - 12.40 m: clast size fine to medium gravel, more matrix ΔΔ dominated, moderately strong to strong HENLEY BRECCIA Δ ΔΔ 12.40 - 13.50 m: matrix silt to coarse coarse sand, minor to 100 PQTT Δ some clay; weak to moderately strong clasts fine to corase ΔΔ gravel size \triangle Δ ΔΔ \triangle ΔΔ Δ 13.50 - 15.00 m: matrix silt to coarse sand; moderately strong ΔΔ to strong Δ 100 ΔΔ POT Δ \wedge Δ 122mm ΔΔ Project: 12506381 GINT LOGS SMOOTH HILL.GPJ | Library: GHD - NZGD.GLB | Date: 7 August 2019 End of Hole @ 15.00m, Target Depth. Inclination: Vertical Orientation: Notes and Comments: GENERAL LOG

≘ Refer to explanation sheets for abbreviation and symbols Report I

End of Hole @ 15.00m, Target Depth. Groundwater SWL at 0.23 mbgl (31/05/2019).

Ground Water Level Contractor: McNeills Date Time 28/05/19 00:00 0.7 15 Equipment: UDR600 (truck mounted) Shear Vane Id: GEO2288

Water level

Project : Smooth Hill Landfill Consenting Hole No. : BH02b Client : Dunedin City Council Sheet : 2 of 2 Site : Toe Bund Foundation : 15.00m Hole Length Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 27/05/2019 Completed: 28/05/2019 Logged : MF Processed : HB Easting: 396358.59 Northing: 788022.89 System: TAIETM2000 RL: 97.41 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Strength (MPa) Flush Return **Material Description** Estimated TCR SCR RQD Depth (m) Number / Method Casing Δ Unweathered, bedded, grey BRECCIA; weak to moderately strong, no defects; clasts: fine to medium gravel, quartz and μğ ΔΔ schist, angular to subrounded; coarse sand matrix (continued Δ from layer starting at 6.6m) ΔΔ \triangle Δ POT Δ 11.00 - 11.80 m: weak to moderately strong Δ Δ Δ Δ 11.80 - 12.40 m: clast size fine to medium gravel, more matrix ΔΔ dominated, moderately strong to strong HENLEY BRECCIA Δ ΔΔ 12.40 - 13.50 m: matrix silt to coarse coarse sand, minor to 100 PQTT Δ some clay; weak to moderately strong clasts fine to corase ΔΔ gravel size \triangle Δ ΔΔ \triangle ΔΔ Δ 13.50 - 15.00 m: matrix silt to coarse sand; moderately strong ΔΔ to strong Δ ΔΔ 100 POT Δ \wedge Δ 122mm ΔΔ Project: 12506381 GINT LOGS SMOOTH HILL.GPJ | Library: GHD - NZGD.GLB | Date: 7 August 2019 End of Hole @ 15.00m, Target Depth. **Ground Water Level** Inclination: Vertical Orientation: Notes and Comments: GENERAL LOG End of Hole @ 15.00m, Target Depth. Contractor: McNeills Date Time Groundwater SWL at 0.21 mbgl (31/05/2019). 28/05/19 00:00 0.7 Equipment: UDR600 (truck mounted)

Shear Vane Id: GEO1826

≘

Report I

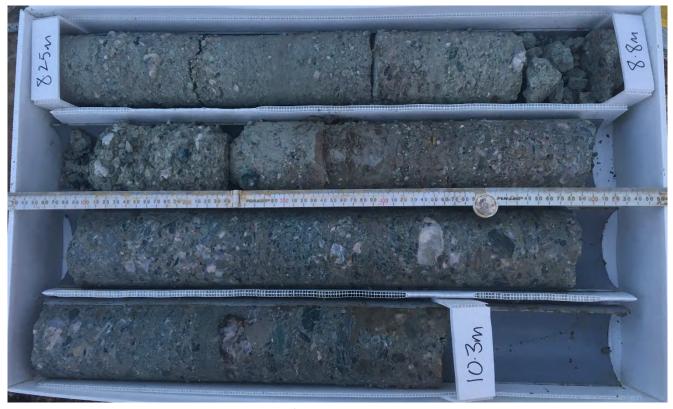
Refer to explanation sheets for abbreviation and symbols

Water level

15

Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 1 of 3				
Borehole ID	BH02					

Box 1 of 6: 0.0 m to 3.7 m


Box 2 of 6: 3.7 m to 5.8 m

Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 2 of 3				
Borehole ID	BH02					

Box 3 of 6: 5.8 m to 8.25 m

Box 4 of 6: 8.25 m to 10.3 m

Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 3 of 3				
Borehole ID	BH02					

Box 5 of 6: 10.3 m to 12.55 m

Box 6 of 6: 12.55 m to 15.0 m (EOH)

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Toe Bund/Central Ridge

Job Number: 12506381

Commenced: 28/05/2019

Completed: 29/05/2019

Scale @ A4 : 1:50 Logged : MF

Hole No.

Hole Length

Sheet

: BH03a

: 1 of 2

: 20.00m

RL: 107	.48	28.38 Northing: 787998.34 Datum: NZVD2016			1	1		_ c	heck	ed	, ,	: JHS	3		
RL (m) Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Result	Casing	Method	Flush Return (%)	Weathering	***Estimated ***Strength (MPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation
1106 1 107 1 107 1 107 1 107 107 107 107 107	X	TOPSOIL: silt, minor clay; light brown and grey. Very s moist, low plasticity; organics mixed in soil Clayey SILT, trace fine sand, trace fine gravel; yellow-b and light grey. Very stiff to hard, moist, high plasticity (I	prown	LOESS	М	VSt VSt-H	SV@1.5m 194 kPa		PQTT	25 50 75			73	30 20 20 20 20 20 20 20 20 20 20 20 20 20	
	× - :	SILT, minor clay, minor fine sand; light grey and orange-brown. Very stiff to hard, dry to moist, low plast	icity		D-M	VSt-H	194 кРа		РОТТ				100	- - - -	
104"	× × × × × × × × × × × × × × × × × × ×	SILT, minor fine sand, trace clay; light grey and orange Hard, dry, non-plastic. Variable iron staining (HENLEY BRECCIA) 2.60 - 3.20 m: CORELOSS (inferred depth) Silty sandy coarse GRAVEL; brown. Well graded; clast angular to sub-angular quartz and schist. Completely	/	,,	D	Н			РОТТ		CW		60	- - - - - - - - - - - - - - - - - - -	
	800000000000000000000000000000000000000	weathered breccia Fine to coarse GRAVEL, some silt, minor fine to coarse purple. Dry, well graded; clasts: subangular to angular, and schist (completely weathered breccia)							PQTT				27		
2 11021 - 2		Highly weathered, red-grey BRECCIA; moderately strong and the stro	ng;	SCIA							HW			- -	
101-		clasts, fine to coarse gravel, quartz and schist, matrix supported Fine to coarse GRAVEL, some silt, minor fine to coarse purple. Dry, well graded; clasts: sub angular to angular, and schist; highly weathered breccia	, quartz	HENLEY BRECCIA	М				PQTT			L	100	- -	
- 7- - 7- 	0 0 0 0 0 0 0 X X X X	\ SILT, minor fine to medium sand, trace to minor fine gr \ \grey and \ yellow-brown. \ Very \ stiff, \ moist, \ non-plastic \ \ Fine to medium \ GRAVEL; \ white \ and \ grey. \ Well \ graded \ angular \ to \ subangular, \ quartz \ and \ schist \ (matrix \ lost \ du \ drilling) \ \ SILT, \ trace \ fine \ gravel; \ brown-grey-light \ purple. \ Hard, \ d \ plastic.	<i></i>		D	н			PQTT				38	-	
8.45 7.9	× × × × × × × × × × × × × × × × × × ×	Unweathered, dark-grey SILTSTONE; weak to moderal strong, no defects Unweathered, grey fine SANDSTONE; weak to moderal strong; no defects		<u>-</u>					PQTT				100 100 100		
<u>8</u> -	× × × × × × × × × × × × × × × × × × ×	8.90 - 9.20 m: CORELOSS (inferred depth) Likely 'loose' sand layer washed away Unweathered, moderately thickly interbedded, dark grey grey SILTSTONE and SANDSTONE; weak to moderate strong, no defects	 y and ely						PQTT		WU		73 73 73		
Notes an		nments:	Inclinati	ion: \	/ertica	al	 Ori	ientat	ion:			Gro	ound Wa	ater Lev	el
	_	.00m, Target Depth at 3.9 mbgl during piezo install.	Contract Equipm Shear \	ent:	UDR	600 (tr	nounted))				Date	e Time	Reading (mbgl)	Hole depth (mbgl)

Project : Smooth Hill Landfill Consenting Hole No. : BH03a Client : Dunedin City Council : 2 of 2 Sheet Site : Toe Bund/Central Ridge : 20.00m Hole Length Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 28/05/2019 Completed: 29/05/2019 Logged : MF Processed : HB Easting: 396428.38 Northing: 787998.34 System: TAIETM2000 RL: 107.48 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Defect Spacing (mm) Strength (MPa) Flush Return **Material Description** eve Estimated Number / Method Casing Depth (SCR RQD Water Unweathered, grey fine to medium SANDSTONE; very weak to weak, no defects 100 100 100 POT SILT, minor clay; brown. Very stiff to hard, dry to moist, D-M VSt-H non-plastic (Possible relic Topsoil) .030 Δ Unweathered, light grey SILTSTONE; very weak to weak, no ΔΔ \triangle Unweathered, light grey and white BRECCIA; moderately Δ strong to strong; clasts: quartz and schist, fine to medium gravel size, angular to subangular. Matrix supported, coarse Δ sand matrix Δ 100 POT Δ Δ Δ Δ Δ Δ Λ Δ Δ Unweathered, light grey fine SANDSTONE; moderately strong POT to strong; no defects 13.79 m: 30 mm SILT layer; stiff Δ Unweathered, moderately thinly to moderately thickly bedded, ΔΔ light grey and white BRECCIA; moderately strong to strong; clasts; quartz & schist, fine to medium gravel size, angular to \triangle \angle BRECCIA sub angular. Matrix supported; coarse sand matrix. Distinct Δ beds of fine and coarse clasts Δ GHD - NZGD.GLB || Date: 7 August 2019 Δ **JENLEY** Δ POTT Δ Δ Δ Δ Δ Δ ΔΔ Λ POT Δ Δ || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: Fine to medium SAND; grey. 'Dense', dry to moist, poorly graded, non lithified (SANDSTONE: Extremely weak to very D-M 'D' 8 weak) Unweathered, light grey, fine SANDSTONE, moderately strong to strong, no defects POT Δ Unweathered, grey BRECCIA, moderately strong to strong; 88 ΔΔ clasts: quartz and schist, fine to medium grained sized; angular to sub-angular, clast supported Δ 18.70 - 19.25 m: clasts fine to coarse gravel sized Δ Δ Unweathered, light grey fine SANDSTONE; moderately strong 100 100 100 POT 122mm 19.40 JT, 15°, pl, r, VN, VE, Fe-stain **Ground Water Level** Inclination: Vertical Orientation: GENERAL_LOG End of Hole @ 20.00m, Target Depth. Contractor: McNeills Date Time Groundwater SWL at 3.9 mbgl during piezo install. 29/05/19 00:00 20 Equipment: UDR600 (truck mounted) Shear Vane Id: GEO2288 ≘ Refer to explanation sheets for abbreviation and symbols Report I

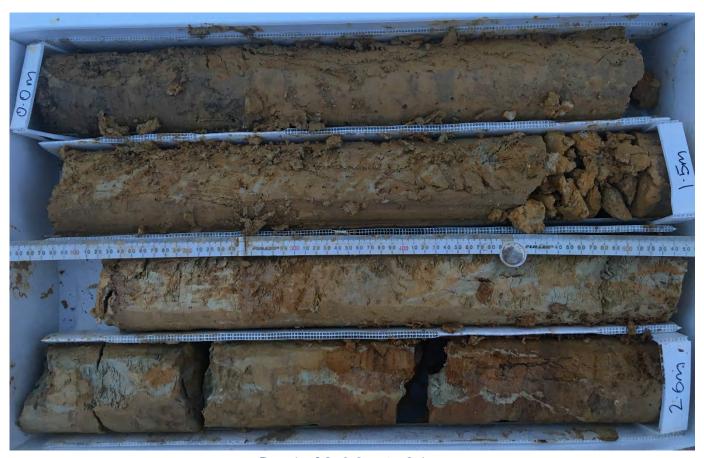
Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Toe bund/Central Ridge

Job Number: 12506381

Commenced: 28/05/2019 Completed: 29/05/2019 Hole No. : BH03b

Sheet : 1 of 2 Hole Length : 20.00m Scale @ A4 : 1:50


Logged : MF

RL:	<u>10</u> 7	.48	Datum: NZVD2016					 	∐c	heck	ed		: JHS	<u>S</u>		
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Result	Casing	Method	Flush Return (%)	Weathering	**Estimated **Strength (MPa)	TCR SCR RQD (%)	° Defect ° Spacing (mm)	Instrumentation Installation
	0.2 0	7, 1 ^N . 7	TOPSOIL: silt, minor clay; light brown and grey. Very s moist, low plasticity; organics mixed in soil	tiff,	ε	М	VSt				25 50 7	5	w> 5 2 > w		20 00 00 00 00 00 00 00 00 00 00 00 00 0	
1106 - 1 1107		× — ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Clayey SILT, trace fine sand, trace fine gravel; yellow-band light grey. Very stiff to hard, moist, high plasticity (I	rown .OESS)	LOESS		VSt-H	SV@1.5m 194 kPa		PQTT				73		
- - - 2	3 1.9	× - :	SILT, minor clay, minor fine sand; light grey and orange-brown. Very stiff to hard, dry to moist, low plast			D-M	VSt-H			РОТ				100		
- COL	2.6 2.	× × - 	SILT, minor fine sand, trace clay; light grey and orange Hard, dry, non-plastic. Variable iron staining (HENLEY BRECCIA)	-brown.		D	Н					۸				
- 104	3.65 3.2	Ø 0×0 Ø 0×0 Ø 0 0	Silty sandy coarse GRAVEL; brown. Well graded; clast angular to sub-angular quartz and schist. Completely weathered breccia Fine to coarse GRAVEL, some silt, minor fine to coarse	e sand;						PQTT		CW		60		
. 2011	-	000000	purple. Dry, well graded; clasts: subangular to angular, and schist (completely weathered breccia)	quartz												
	<u></u>	00000								PQTT				27		- -
	6.26.05 5.7		Highly weathered, red-grey BRECCIA; moderately stronclasts, fine to coarse gravel, quartz and schist, matrix supported	/	Y BRECCIA					PQTT		HW		100		
	6.6	× :	Fine to coarse GRAVEL, some silt, minor fine to coarse purple. Dry, well graded; clasts: sub angular to angular, and schist; highly weathered breccia SILT, minor fine to medium sand, trace to minor fine gr	quartz	HENLEY	М										
. 7001	7.5	0000	grey and yellow-brown. Very stiff, moist, non-plastic Fine to medium GRAVEL; white and grey. Well graded angular to subangular, quartz and schist (matrix lost du drilling)	ring	1					PQTT				38		
. 8	2.9	× : × × : × × × × ×	SILT, trace fine gravel; brown-grey-light purple. Hard, d plastic. Unweathered, dark-grey SILTSTONE; weak to moderal strong, no defects	•	10	D	Н							100		
- - -	8.45	× × × × · · · · ·	Unweathered, grey fine SANDSTONE; weak to modera strong; no defects	itely						PQTT			-	100		
	9.2 8.9		8.90 - 9.20 m: CORELOSS (inferred depth) Likely 'loose' sand layer washed away Unweathered, moderately thickly interbedded, dark grey grey SILTSTONE and SANDSTONE; weak to moderate	 / and						РОТТ		WU		73 73 73		0.00 V Q (
-		× × × × × × × ×	strong, no defects	T		/::·								und M	ator I =	
			ments: 00m, Target Depth.	Inclinati				Ori	ientat	ion:					Reading	
		_	oum, Target Deptn at 12.6 mbgl during piezo install.	Equipm Shear \	nent:	UDR	600 (tr	mounted))				Date	Time	(mbgl)	(mbgl)

Project : Smooth Hill Landfill Consenting Hole No. : BH03b Client : Dunedin City Council : 2 of 2 Sheet Site : Toe bund/Central Ridge : 20.00m Hole Length Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 28/05/2019 Completed: 29/05/2019 Logged : MF Processed : HB Easting: 396428.38 Northing: 787998.34 System: TAIETM2000 RL: 107.48 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Defect Spacing (mm) Strength (MPa) Flush Return **Material Description** Water level Estimated Number Method Casing Depth (SCR RQD Unweathered, grey fine to medium SANDSTONE; very weak to weak, no defects 100 100 100 POT SILT, minor clay; brown. Very stiff to hard, dry to moist, D-M VSt-H non-plastic (Possible relic Topsoil) .030 Δ Unweathered, light grey SILTSTONE; very weak to weak, no ΔΔ \triangle Unweathered, light grey and white BRECCIA; moderately Δ strong to strong; clasts: quartz and schist, fine to medium gravel size, angular to subangular. Matrix supported, coarse Δ sand matrix Δ 100 POT Δ Δ Δ Δ Δ Δ Λ Δ Δ Unweathered, light grey fine SANDSTONE; moderately strong POT to strong; no defects 13.79 m: 30 mm SILT layer; stiff Δ Unweathered, moderately thinly to moderately thickly bedded, light grey and white BRECCIA; moderately strong to strong; ΔΔ clasts; quartz & schist, fine to medium gravel size, angular to \triangle \angle BRECCIA sub angular. Matrix supported; coarse sand matrix. Distinct Δ beds of fi Δ GHD - NZGD.GLB || Date: 7 August 2019 Δ **JENLEY** Δ POTT Δ Δ Δ Δ Δ Δ ΔΔ Λ POT Δ Δ || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: Fine to medium SAND; grey. 'Dense', dry to moist, poorly graded, non lithified (SANDSTONE: Extremely weak to very D-M 'D' 8 weak) Unweathered, light grey, fine SANDSTONE, moderately strong to strong, no defects POT Δ Unweathered, grey BRECCIA, moderately strong to strong; 88 ΔΔ clasts: quartz and schist, fine to medium grained sized; angular to sub-angular, clast supported Δ 18.70 - 19.25 m: clasts fine to coarse gravel sized Δ Δ Unweathered, light grey fine SANDSTONE; moderately strong 100 100 100 POT 122mm 19.40 JT, 15°, pl, r, VN, VE, Fe-stain **Ground Water Level** Inclination: Vertical Orientation: GENERAL_LOG End of Hole @ 20.00m. Target Depth. Contractor: McNeills Date Time Groundwater SWL at 12.6 mbgl during piezo install. 29/05/19 00:00 20 Equipment: UDR600 (truck mounted) Shear Vane Id: GEO2288 ≘ Refer to explanation sheets for abbreviation and symbols Report I

Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 1 of 4				
Borehole ID	BH03					

Box 1 of 8: 0.0 m to 2.6 m

Box 2 of 8: 2.6 m to 6.25 m

Project	Smooth Hill Landfill Consenting				
Client	Dunedin City Council				
Job number	12506381	Page 2 of 4			
Borehole ID	BH03				

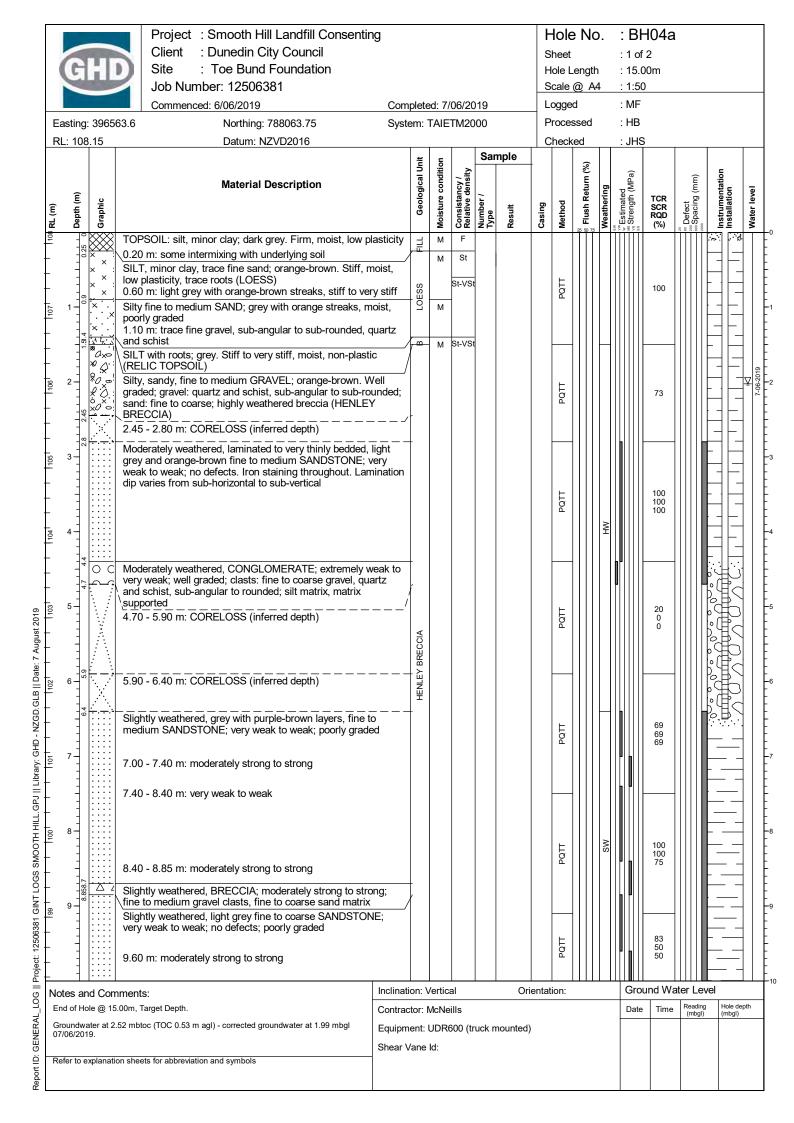
Box 3 of 8: 6.25 m to 9.25 m

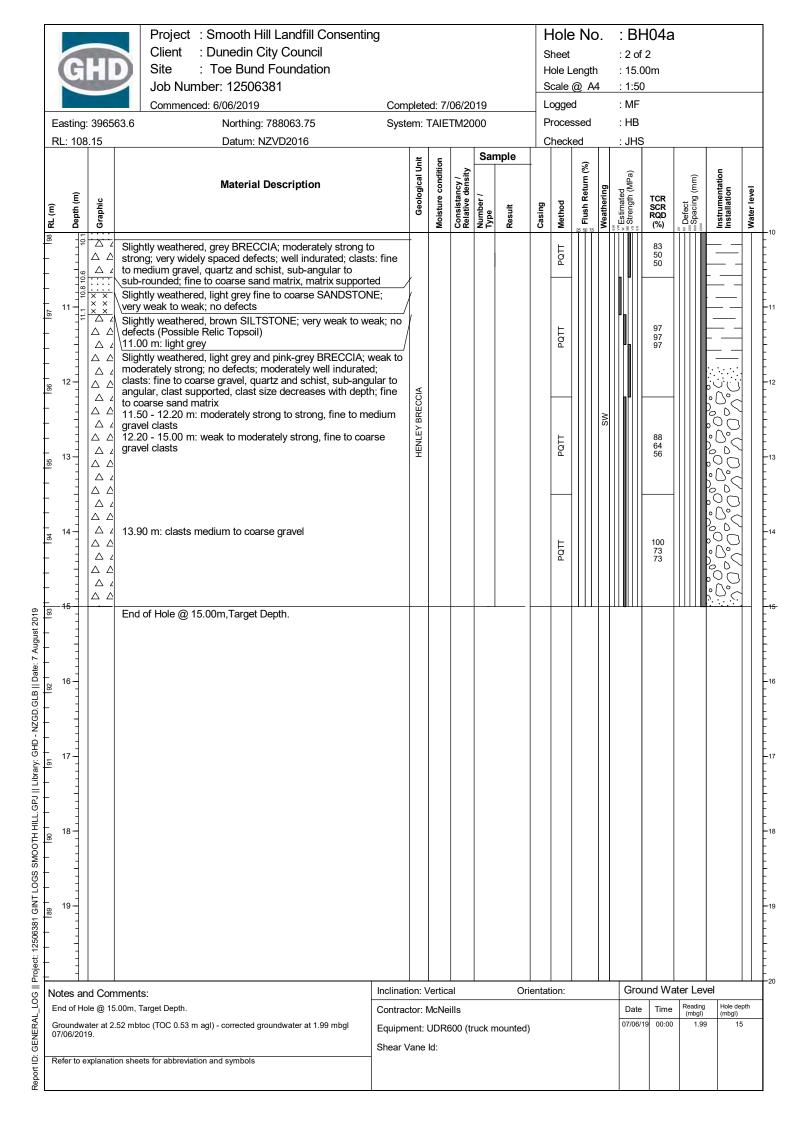
Box 4 of 8: 9.25 m to 11.05 m

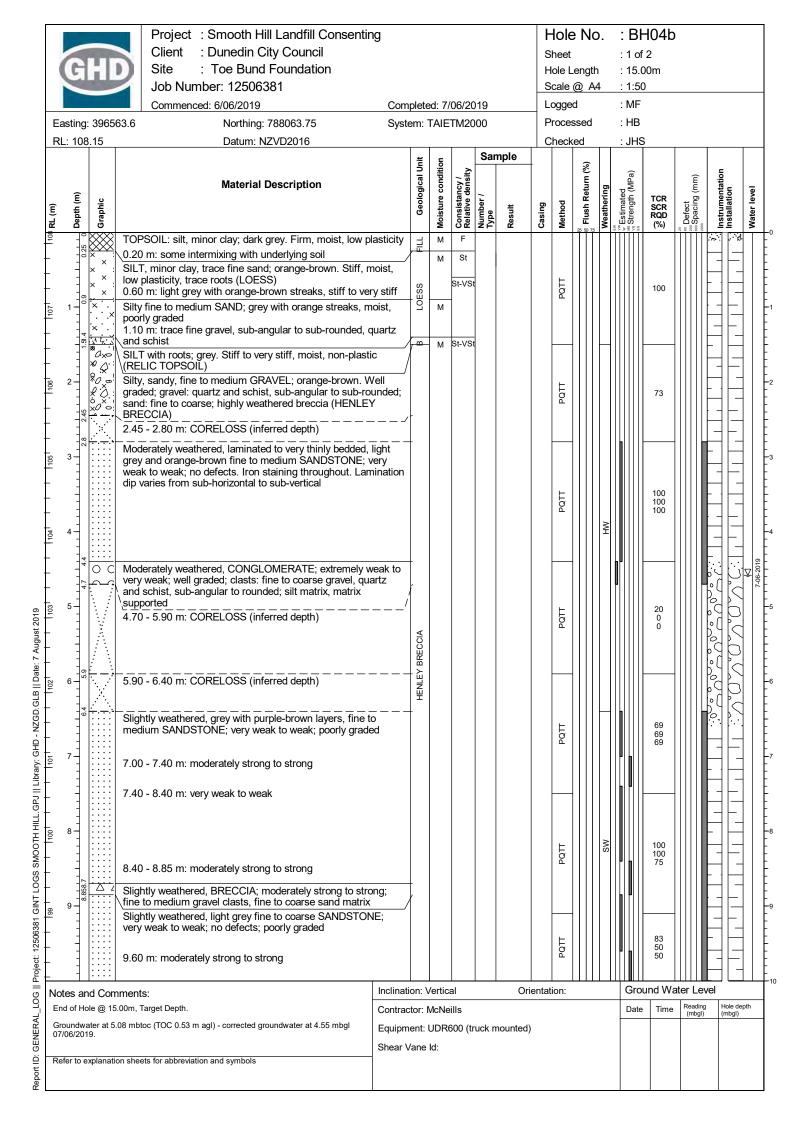
Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 3 of 4				
Borehole ID	BH03					

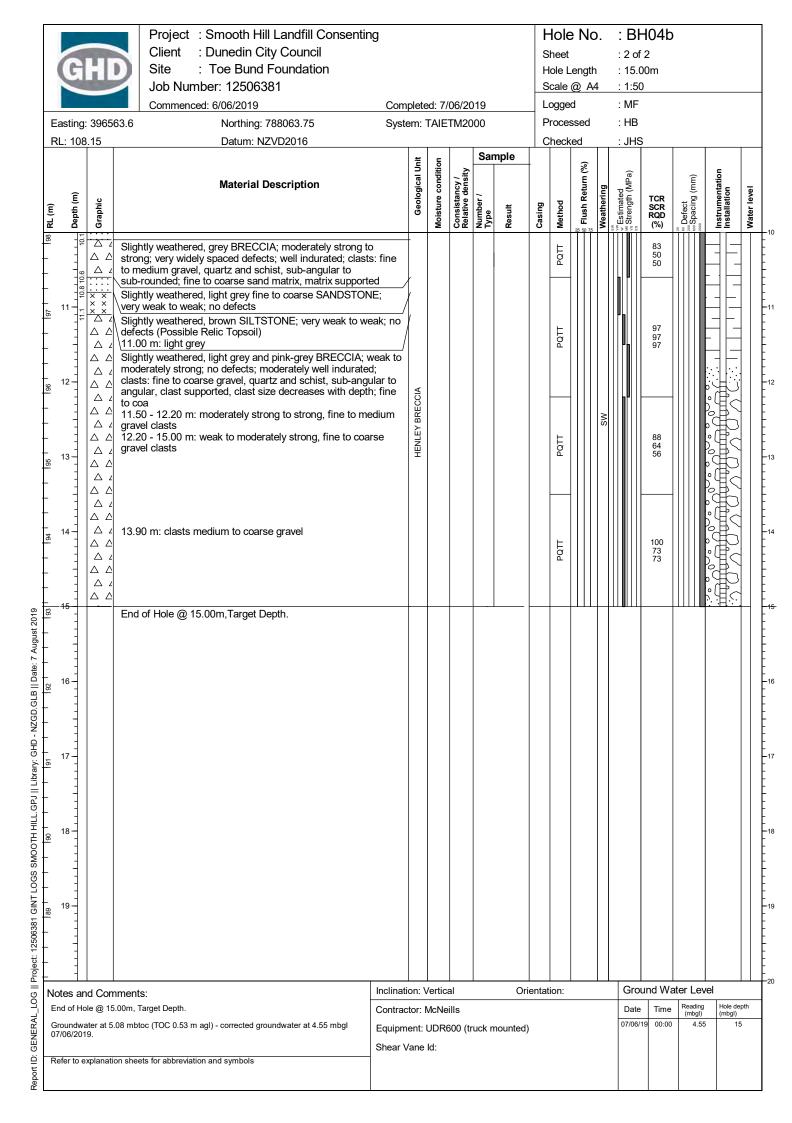
Box 5 of 8: 11.05 m to 13.3 m

Box 6 of 8: 13.3 m to 15.6 m


Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 4 of 4				
Borehole ID	BH03					




Box 7 of 8: 15.6 m to 17.7 m



Box 8 of 8: 17.7 m to 20.0 m (EOH)

Project	Smooth Hill Landfill Consenting					
Client	Dunedin City Council					
Job number	12506381	Page 1 of 3				
Borehole ID	BH04					

Box 1 of 6: 0.0 m to 2.7 m

Box 2 of 6: 2.7 m to 5.9 m

Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 2 of 3		
Borehole ID	BH04			

Box 3 of 6: 5.9 m to 8.7 m

Box 4 of 6: 8.7 m to 11.1 m


Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 3 of 3		
Borehole ID	BH04			

Box 5 of 6: 11.1 m to 13.5 m

Box 6 of 6: 13.5 m to 15.0 m (EOH)

Project : Smooth Hill Landfill Consenting Hole No. : BH05a Client : Dunedin City Council : 2 of 3 Sheet Site : Central Ridge Hole Length : 30.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 29/05/2019 Completed: 30/05/2019 Logged : MF Processed : HB Easting: 396459.76 Northing: 787862.12 System: TAIETM2000 RL: 129.5 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Strength (MPa) Flush Return **Material Description** Estimated Number Method Casing Depth (SCR RQD Slightly weathered, grey, SANDSTONE; weak to moderately strong; wide spaced defects; fine sand to coarse gravel size grains (continued from layer starting at 9.1m) 10.20 - 10.90 m: fine grained 10.25 m: 20 mm lignite interbed POT 10.90 - 11.40 m: fine to coarse sand, trace fine gravel of quartz schist 11.40 - 14.10 m: fine grained size, occasional organic laminates, widely spaced defects, black staining on faces POT 12.69 m: 50mm thick organic-rich layer, 2 mm lignite at each 13.20 m: moderately strong to strong POTT Δ Slightly weathered, massive, grey and white BRECCIA; Δ moderately strong to strong; very widely spaced defects; matrix Δ supported; clasts: fine to coarse gravel size, angular to sub-angular, quartz and schist, some clasts up to cobble size; BRECCIA Δ matrix: coarse sand Δ 14.60 - 15.60 m: weak to moderately strong ΔΔ GHD - NZGD.GLB || Date: 7 August 2019 **JENLEY** Δ POT Δ Δ 15.60 - 16.20 m: moderately strong to strong Δ Δ ΔΔ Δ 16.20 - 16.60 m: weak to moderately strong ΔΔ Δ 16.60 - 17.10 m: moderately strong to strong ΔΔ POT \triangle \angle 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: ΔΔ 17.10 - 17.70 m: weak to moderately strong Δ ΔΔ _^ 17.70 - 18.10 m: CORELOSS Δ Slightly weathered, massive, grey and white BRECCIA; very ΔΔ weak to weak; very widely spaced defects; clast supported. 100 POT \triangle Clasts: fine to coarse gravel size, angular to sub-angular, quartz and schist, some clasts up to cobble size Δ 18.30 m: coarse gravel dominated Δ 18.50 - 19.20 m: moderately strong to strong, harder matrix Δ Slightly weathered, grey, fine SANDSTONE; very weak to weak; moderately widely spaced; orange iron stained layer. 100 POT Breaks preferentially on iron stained layers 94 94 || Project: Ground Water Level Inclination: Vertical Orientation: Notes and Comments: 500 Date Time

End of Hole @ 30.00m, Target Depth.

≘

Report I

~ 0.5 m topsoil stripped to make drill pad Groundwater SWL at 16.4 mbgl during piezo install.

Refer to explanation sheets for abbreviation and symbols

Contractor: McNeills

Equipment: UDR600 (truck mounted) Shear Vane Id: GEO2288

Reading (mbgl)

Defect Spacing (mm)

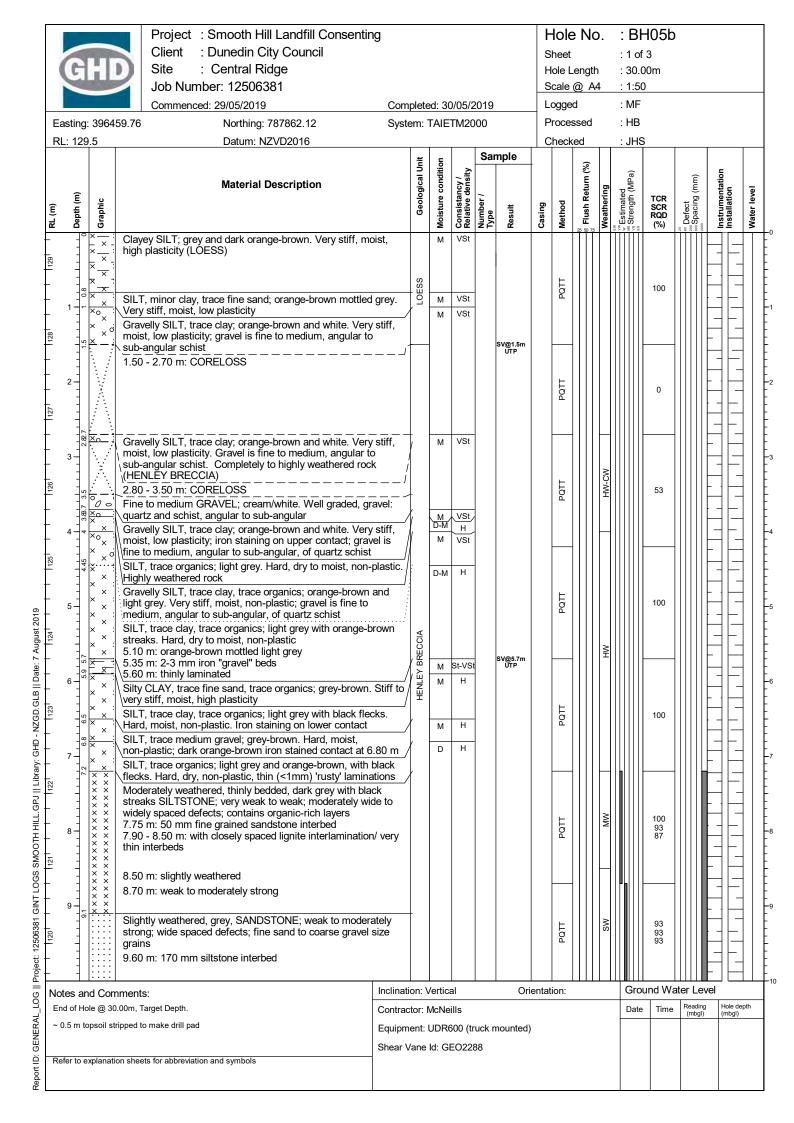
eve

Water

Site

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council


: Central Ridge Job Number: 12506381

Completed: 30/05/2019 Commenced: 29/05/2019

: BH05a Hole No. Sheet : 3 of 3 Hole Length : 30.00m Scale @ A4 : 1:50

Logged : MF

	sting: : 129		59.76 Northing: 787862.12 Datum: NZVD2016	Syste	em: ⁻	TAIE	TM20			roces heck		, ,	: HB : JH	S		, ,	_
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Result aldu	Casing	Method	Flush Return (%)	Weathering	" "Estimated "Strength (MPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation	Water level
2	1-		Slightly weathered, grey, fine SANDSTONE; very weak weak; moderately widely spaced; orange iron stained lay Breaks preferentially on iron stained layers (continued filayer starting at 19.2m) 20.00 m: spaced thin siltstone interbeds 20.55 m: moderately strong to strong 20.65 - 21.80 m: very weak to weak	yer.						Т				100 94 94 94			
2	22.4		21.80 - 22.00 m: weak to moderately strong 21.95 m: 20 mm SILTSTONE interbed 22.00 m: moderately strong to strong Slightly weathered, grey, pink and white BRECCIA; moderately strong	derately	-					PQTT				100 100 100			
2:	3-		strong to strong; very widely spaced defects; clast supp clasts: fine to coarse gravel size, angular to sub-angular quartz and schist							РОТТ				87 87 77			
3	4 —		23.80 - 24.20 m: clasts: fine gravel size with occasional gravel 24.10 - 24.30 m: very weak to weak 24.30 - 24.65 m: moderately strong to strong 24.65 - 24.75 m: very weak to weak 24.75 - 26.65 m: moderately strong to strong	coarse	LEY BRECCIA					PQTT		SW		100 93 93			
21	9 26.65		25.30 - 26.65 m: clasts fine to coarse gravel sized		HENLEY					РОТТ				87 87 73			
2	27.8 27.3	× × × × × × × × × × × × × × × × × × ×	Reddish brown SILTSTONE; extremely weak to very we 26.80 m: light grey, SILT/SAND mix; hard/very dense Silty fine to medium silty SANDSTONE, very weak; sha contact with breccia, dips 20-30° Slightly weathered, light brown, grey and white BRECCI weak to moderately strong; very widely spaced defects;	arp base	-					РОТТ				100 100 100			
2	9 —		supported; clasts: fine to coarse gravel size, quartz and angular to sub-angular 28.40 - 30.00 0							РДТТ		NM		94 91 91			
	es an	∆ ∠				Gro	ound Wa	ater Le	vel								
End of Hole @ 30.00m, Target Depth. ~ 0.5 m topsoil stripped to make drill pad Groundwater SWL at 16.4 mbgl during piezo install. Refer to explanation sheets for abbreviation and symbols Contractor: McNeills Equipment: UDR600 (truck mounted) Shear Vane Id: GEO2288																	

Project : Smooth Hill Landfill Consenting Hole No. : BH05b Client : Dunedin City Council : 2 of 3 Sheet Site : Central Ridge Hole Length : 30.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 29/05/2019 Completed: 30/05/2019 Logged : MF Processed : HB Easting: 396459.76 Northing: 787862.12 System: TAIETM2000 RL: 129.5 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density Flush Return **Material Description** Estimated Strength Number Method Casing Depth (SCR RQD Slightly weathered, grey, SANDSTONE; weak to moderately strong; wide spaced defects; fine sand to coarse gravel size grains (continued from layer starting at 9.1m) 10.20 - 10.90 m: fine grained 10.25 m: 20 mm lignite interbed POT 10.90 - 11.40 m: fine to coarse sand, trace fine gravel of quartz schist 11.40 - 14.10 m: fine grained size, occasional organic laminates, widely spaced defects, black staining on faces POT 12.69 m: 50mm thick organic-rich layer, 2 mm lignite at each 13.20 m: moderately strong to strong POTT Δ Slightly weathered, massive, grey and white BRECCIA; Δ moderately strong to strong; very widely spaced defects; matrix Δ supported; clasts: fine to coarse gravel size, angular to sub-angular, quartz and schist, some clasts up to cobble size; BRECCIA Δ matrix: coarse sa Δ 14.60 - 15.60 m: weak to moderately strong ΔΔ GHD - NZGD.GLB || Date: 7 August 2019 **JENLEY** Δ POT Δ Δ 15.60 - 16.20 m: moderately strong to strong Δ Δ ΔΔ Δ 16.20 - 16.60 m: weak to moderately strong ΔΔ Δ 16.60 - 17.10 m: moderately strong to strong ΔΔ POT \triangle \angle 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: ΔΔ 17.10 - 17.70 m: weak to moderately strong Δ ΔΔ _^ 17.70 - 18.10 m: CORELOSS Δ Slightly weathered, massive, grey and white BRECCIA; very ΔΔ weak to weak; very widely spaced defects; clast supported. 100 POT \triangle Clasts: fine to coarse gravel size, angular to sub-angular, quartz and schist, some clasts up to cobble size Δ 18.30 m: coarse gravel dominated Δ 18.50 - 19.20 m: moderately strong to strong, harder matrix Δ Slightly weathered, grey, fine SANDSTONE; very weak to weak; moderately widely spaced; orange iron stained layer. 100 POT Breaks preferentially on iron stained layers 94 94 || Project: Ground Water Level Inclination: Vertical 500

Notes and Comments: End of Hole @ 30.00m, Target Depth.

≘

Report I

 $\sim 0.5 \text{ m}$ topsoil stripped to make drill pad

Refer to explanation sheets for abbreviation and symbols

Orientation:

Contractor: McNeills

Equipment: UDR600 (truck mounted)

Shear Vane Id: GEO2288

Reading (mbgl) Date Time

Defect Spacing (mm)

eve

Water

Project : Smooth Hill Landfill Consenting Hole No. : BH05b Client : Dunedin City Council : 3 of 3 Sheet Site : Central Ridge Hole Length : 30.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 29/05/2019 Completed: 30/05/2019 Logged : MF Processed : HB Easting: 396459.76 Northing: 787862.12 System: TAIETM2000 RL: 129.5 Checked Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density (MPa) Flush Return **Material Description** Estimated Strength Number Method Casing Depth (SCR RQD Slightly weathered, grey, fine SANDSTONE; very weak to weak; moderately widely spaced; orange iron stained layer. 100 94 94 Pot Breaks preferentially on iron stained layers (continued from layer starting at 19.2m) 20.00 m: spaced thin siltstone interbeds 20.55 m: moderately strong to strong 20.65 - 21.80 m: very weak to weak 2 POT 21.80 - 22.00 m: weak to moderately strong 22 21.95 m: 20 mm SILTSTONE interbed 22.00 m: moderately strong to strong $\dot{\Delta}$ Slightly weathered, grey, pink and white BRECCIA; moderately ΔΔ strong to strong; very widely spaced defects; clast supported; clasts: fine to coarse gravel size, angular to sub-angular, Δ quartz and schist POT Δ Δ Δ Δ Δ Δ 23.80 - 24.20 m: clasts: fine gravel size with occasional coarse 24 Δ 24.10 - 24.30 m: very weak to weak Δ Δ 24.30 - 24.65 m: moderately strong to strong POT Δ BRECCIA ΔΔ 24.65 - 24.75 m: very weak to weak 24.75 - 26.65 m: moderately strong to strong Δ 25 GHD - NZGD.GLB || Date: 7 August 2019 ΔΔ **JENLEY** Δ 25.30 - 26.65 m: clasts fine to coarse gravel sized ΔΔ Δ ΔΔ POT Δ 26 ΔΔ Δ ΔΔ Reddish brown SILTSTONE; extremely weak to very weak 26.80 m: light grey, SILT/SAND mix; hard/very dense || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: 102 Silty fine to medium silty SANDSTONE, very weak; sharp base POT contact with breccia, dips 20-30° $\dot{\Delta}$ Slightly weathered, light brown, grey and white BRECCIA; ΔΔ weak to moderately strong; very widely spaced defects; clast supported; clasts: fine to coarse gravel size, quartz and schist, Δ angular to sub-angular Δ 28.40 - 30.00 0 \triangle Δ ΔΔ Δ 29 Δ PQTT Δ Δ Δ 122mm Δ Notes and Comments: Inclination: Vertical Orientation: 500 Date

End of Hole @ 30.00m. Target Depth. $\sim 0.5 \text{ m}$ topsoil stripped to make drill pad

Contractor: McNeills

Ground Water Level

Time

Reading (mbgl)

100

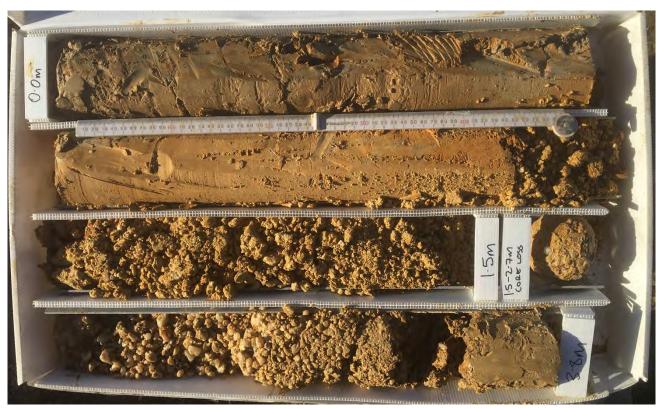
Spacing (mm)

eve

Water

Equipment: UDR600 (truck mounted)

Shear Vane Id: GEO2288


Refer to explanation sheets for abbreviation and symbols

≘

Report I

Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 1 of 7		
Borehole ID	BH05			

Box 1 of 14: 0.0 m to 3.8 m

Box 2 of 14: 3.8 m to 5.8 m

Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 2 of 7		
Borehole ID	BH05			

Box 3 of 14: 5.8 m to 7.88 m

Box 4 of 14: 7.88 m to 9.93 m

Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 3 of 7		
Borehole ID	BH05			


Box 5 of 14: 9.93 m to 11.87 m

Box 6 of 14: 11.87 m to 13.9 m

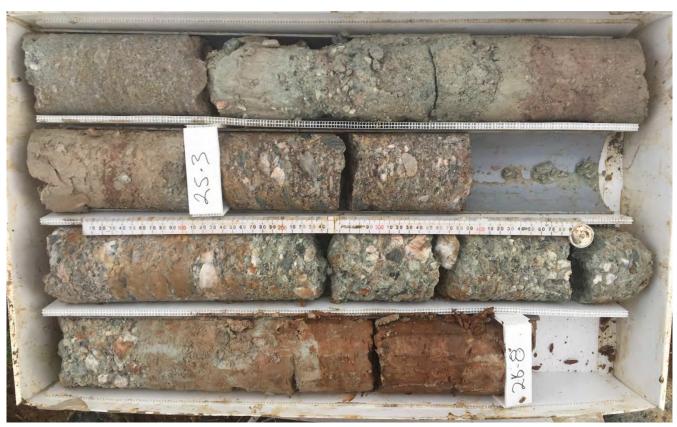
Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 4 of 7		
Borehole ID	BH05			

Box 7 of 14: 13.9 m to 15.87 m

Box 8 of 14: 15.87 m to 18.45 m

Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 5 of 7		
Borehole ID	BH05			

Box 9 of 14: 18.45 m to 20.1 m


Box 10 of 14: 20.1 m to 22.08 m

Project	Smooth Hill Landfill Consenting			
Client	Dunedin City Council			
Job number	12506381	Page 6 of 7		
Borehole ID	BH05			

Box 11 of 14: 22.08 m to 24.5 m


Box 12 of 14: 24.5 m to 26.8 m

Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 7 of 7	
Borehole ID	BH05		

Box 13 of 14: 26.8 m to 29.0 m

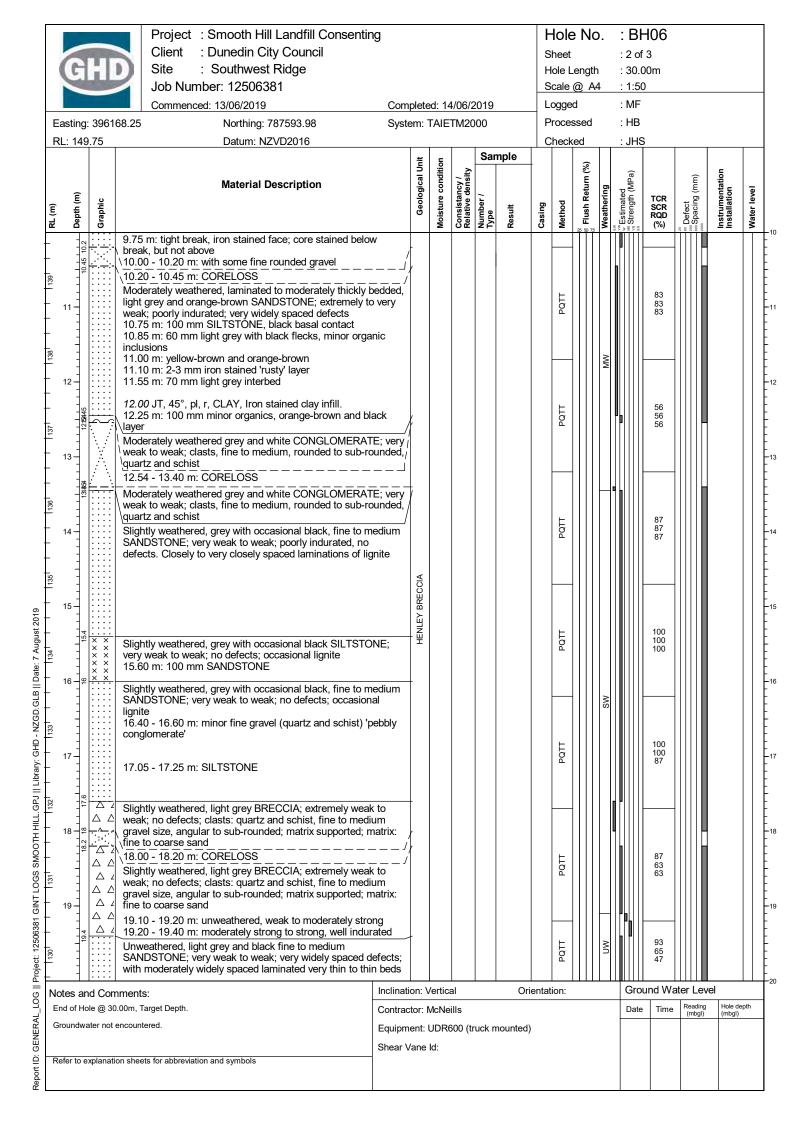
Box 14 of 14: 29.0 m to 30.0 m (EOH)

Project : Smooth Hill Landfill Consenting Hole No. : BH06 Client : Dunedin City Council Sheet · 1 of 3 Site : Southwest Ridge Hole Length : 30.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 13/06/2019 Logged : MF Completed: 14/06/2019 Processed : HB Easting: 396168.25 Northing: 787593.98 System: TAIETM2000 Checked RL: 149.75 Datum: NZVD2016 : JHS Sample **Geological Unit** Moisture condition 8 Consistancy / Relative density Strength (MPa) Flush Return **Material Description** Estimated Number Graphic Method Casing Depth (SCR RQD Top 250 mm dug out for drill pad (TOPSOIL) SILT, trace to minor clay, trace fine to medium sand, trace fine VSt × gravel; grey and orange-brown. Very stiff, moist, low plasticity × 83 LOESS POT × 17 × Highly weathered, yellow-brown SILTSTONE; extremely weak; no defects (HENLEY BRECCIA) Highly weathered, thinly bedded, yellow-brown silty fine SANDSTONE; extremely weak; no defects; iron-staining in layers and spots; trace organics throughout; 100 POTT 89 2.70 m: 170 mm layer gravelly SANDSTONE ≩ POTT POT 4.90 m: 200mm loose sand/pebbly layer; likely coreloss depth GHD - NZGD.GLB || Date: 7 August 2019 HENLEY BRECCIA 5.50 - 5.70 m: Fine gravel (quartz and schist, angular to 4 sub-angular) layer POT 143 6.70 - 7.20 m: moderately weathered, very weak to weak || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: Moderately weathered, yellow-brown SILTSTONE; very weak × × × × × × × to weak, very widely spaced defects 7.30 - 7.75 m: light grey with black flecks 142 7.75 m: orange-brown with black streaks; break on bedding POTT plane, dark iron-staining on face Moderately weathered, grey, fine to coarse SANDSTONE; extremely weak to very weak 8.10 - 8.70 m: CORELOSS Moderately weathered, fine to medium SANDSTONE; very weak to weak; widely spaced defects 100 POT 9.25 m: tight break, iron-stained face, staining decreases for 50 mm above and below break 9.72 m: 15-20 mm dark brown layer Ground Water Level Inclination: Vertical Orientation: Notes and Comments: GENERAL_LOG End of Hole @ 30.00m, Target Depth. Contractor: McNeills Date Time Groundwater not encountered.

Equipment: UDR600 (truck mounted)

Shear Vane Id:

≘


Report I

Refer to explanation sheets for abbreviation and symbols

Defect Spacing (mm)

Reading (mbgl)

Water level

Site Report ID: GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL GPJ || Library: GHD - NZGD.GLB || Date: 7 August 2019

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council : Southwest Ridge

Job Number: 12506381

Hole No.

Hole Length

Scale @ A4

Sheet

: BH06

: 3 of 3

: 1:50

: 30.00m

				Commenced: 13/06/2019	menced: 13/06/2019 Completed: 14/06/2019		Logged : MF														
	Eastin	g: 3	9616	88.25 Northing: 78759	3.98	System	n: T	AIE	TM20	00		P	roces	sed		: HB					
	RL: 14	9.7	'5	Datum: NZVD20	016							С	heck	ed		: JHS	;				
						1	털	ion			nple			%					_		
	(E)		Jic Jic	Material Descri	ption		Geological Unit	Moisture condition	Consistancy / Relative density	er/	±	6	pc	Flush Return (%)	Weathering	***Estimated ***Strength (MPa)	TCR SCP	Defect Spacing (mm)	Instrumentation Installation	Water level	
	RL (m) Depth (m)		Graphic			(ğ	Moist	Cons Relati	Numk Type	Result	Casing	Method	Flus	Weat	Estir	SCR RQD (%)	Defe Spac	Instru	Wate	
	1129	٠.		of lignite and widely spaced moderately Unweathered, light grey and black fine SANDSTONE; very weak to weak; very with moderately widely spaced laminat of lignite and widely spaced moderately (continued from layer starting at 19.4m)	to medium y widely spaced defect ed very thin to thin be y thin siltstone beds	ects; eds							PQTT	25 50 7	5	W > 5 2 > W	93 65 47	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-20 - - - - - -
	- 21 - 			20.20 m: fine to coarse sand 20.70 m: fine to medium sand 21.06 m: 230 mm siltstone interbed									PQTT				100 100 100			-	- 21 - - - - -
	- 22 -			21.70 m: very thinly bedded (2-10 mm)																- - - -22 -
	127			22.20 m: moderately thickly bedded (~ 22.40 m: 150 mm siltstone interbed	300 mm)															-	- - - -
	23			22.75 m: laminated (2-10 mm)									PQTT				87 87 87				- -23 - - - - - -
	- 24 - - 25 -					\$ 7.00 L	HENLEY BRECCIA						PQTT		W		100 100 100				- -24 - - - - - - - - - - - -
Date:							HENLEY						PQTT				88 88 88				- - - - - - - - -26
J Library: GHD	- 27			27.50 - 28.50 m: very closey spaced frinduced	ractures, possibly dril	lling							PQTT				100 32 32 32				- - - - - - - - - - - -
	- 28 - 			28.40 - 28.50 m: dark grey-brown for 1																	- -28 - - - - - -
2506381 GINT L	29 -	89 . 2		28.70 - 28.80 m: dark brown layer - loc Unweathered, light grey BRECCIA; we no defects; moderately well indurated; schist, fine gravel size, sub-angular to supported; matrix: fine to coarse sand	eak to moderately stro clasts: quartz and	ong;							PQTT				76 76 76				- - -29 - - - - - -
<u> </u>	- †	ne d	△ ₄	End of Hole @ 30.00m,Target Depth.	Inc	clination	<u>ا</u> ۲۰۱۷	ertica	ıl		∩ri	entat	ion [.]	Ш		Gro	und Wa	ter I evel		\dashv	-30 -
LOG						ontracto						ul				Date	Ground Wate		Reading Hole depth		
GENERAI	End of Hole @ 30.00m, Target Depth. Groundwater not encountered.		Ec	Equipment: UDR600 (truck mounted) Shear Vane Id: Date Time (mbgl) (mbgl)				(mbgl) 30													
port ID:	Refer to	expl	lanatio	on sheets for abbreviation and symbols																	

Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 1 of 7	
Borehole ID	BH06		

Box 1 of 13: 0.0 m to 2.4 m

Box 2 of 13: 2.4 m to 4.6 m

Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 2 of 7	
Borehole ID	BH06		

Box 3 of 13: 4.6 m to 7.2 m

Box 4 of 13: 7.2 m to 10.0 m

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 3 of 7
Borehole ID	BH06	

Box 5 of 13: 10.0 m to 13.2 m

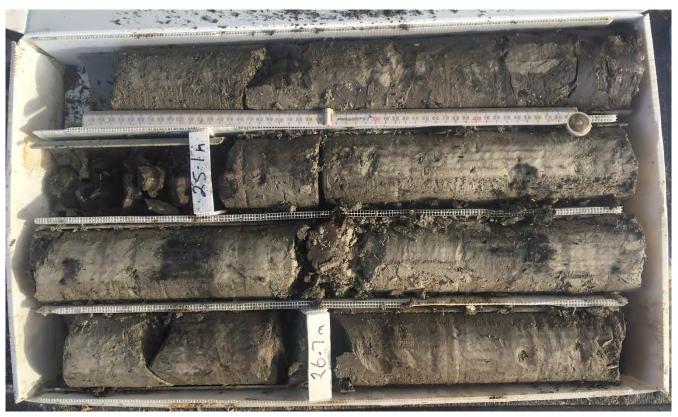
Box 6 of 13: 13.2 m to 15.6 m

Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 4 of 7	
Borehole ID	BH06		

Box 7 of 13: 15.6 m to 17.7 m

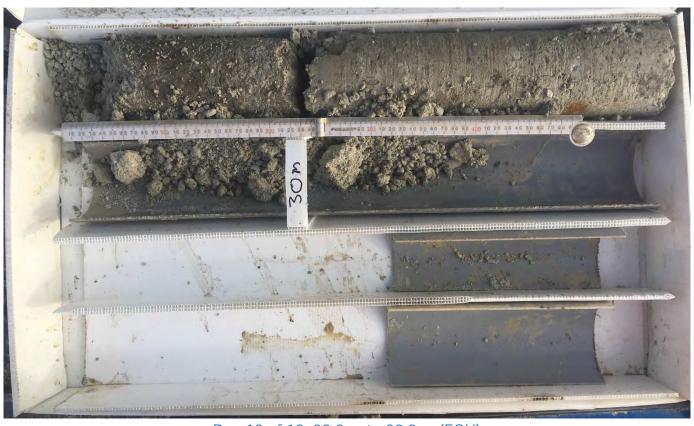
Box 8 of 13: 17.7 m to 20.2 m

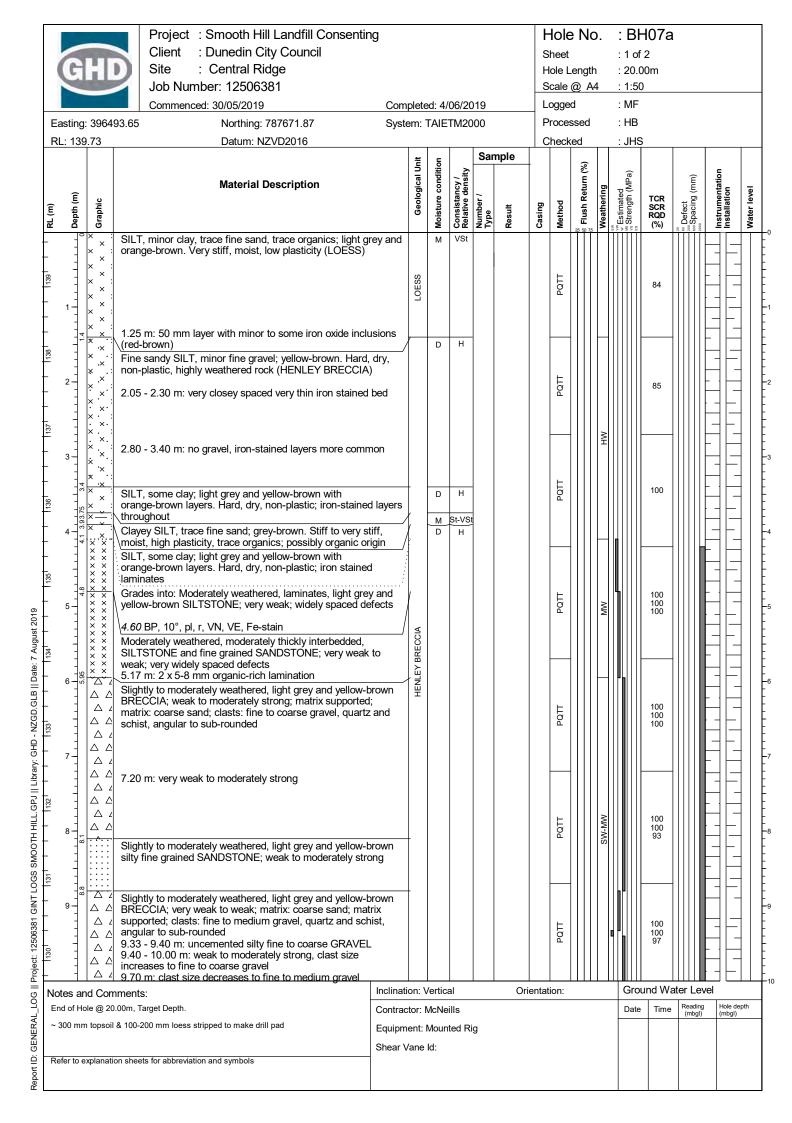
Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 5 of 7
Borehole ID	BH06	

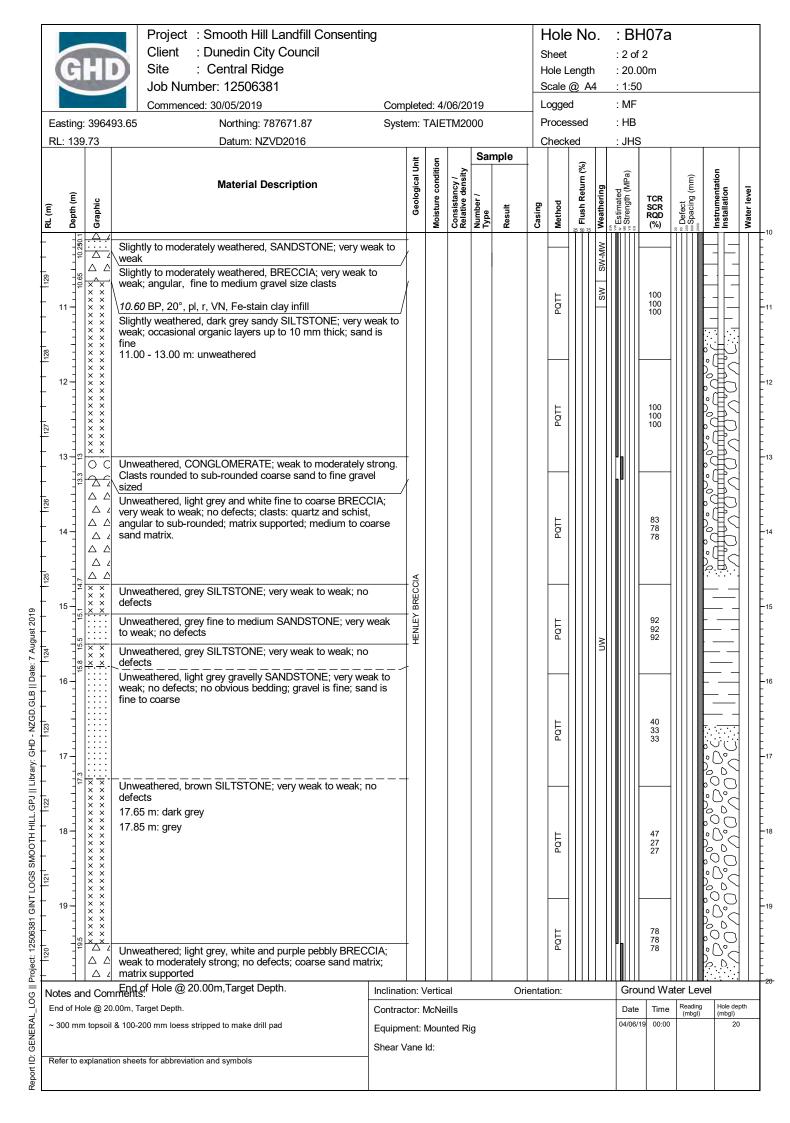

Box 9 of 13: 20.2 m to 22.2 m

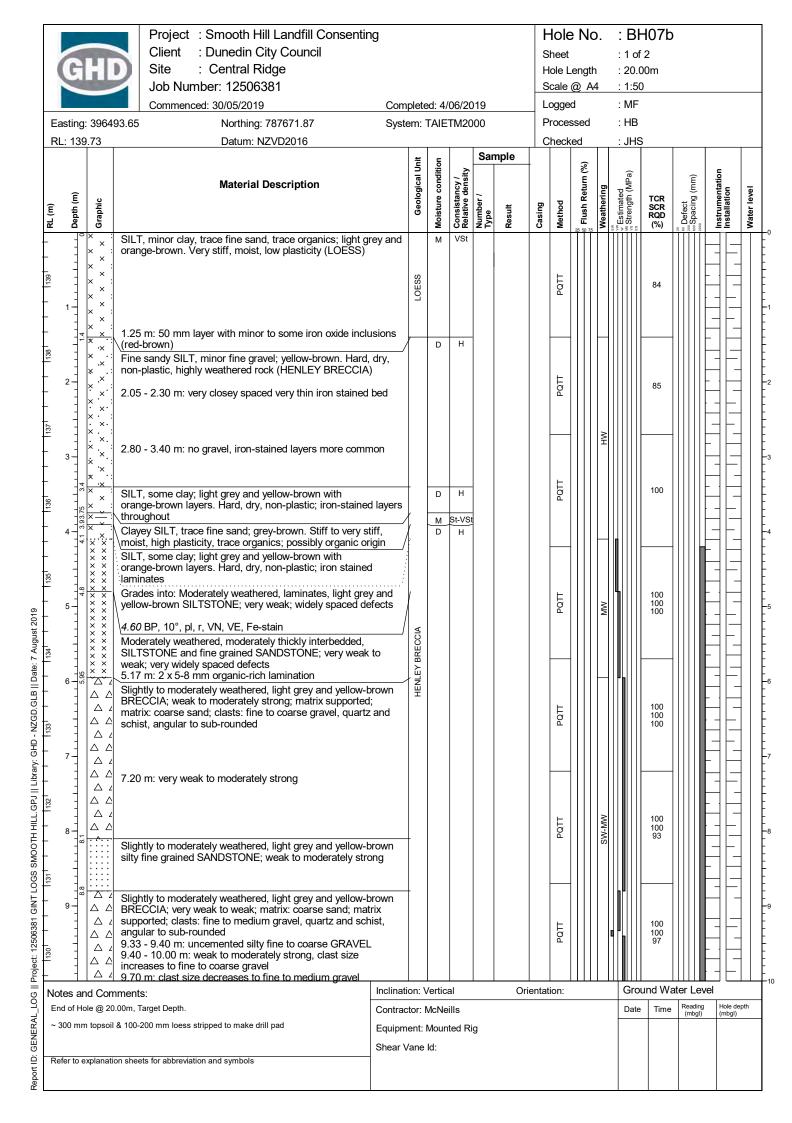
Box 10 of 13: 22.2 m to 24.7 m

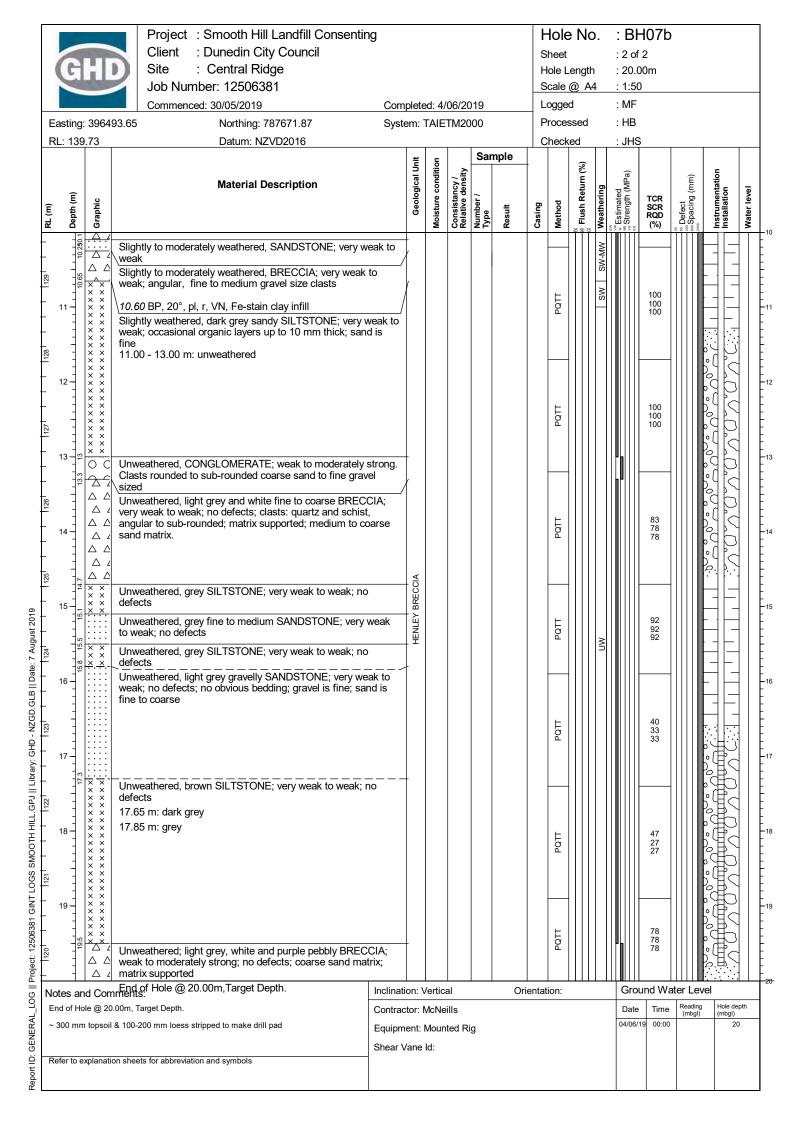
Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 6 of 7	
Borehole ID	BH06		


Box 11 of 13: 24.7 m to 27.0 m


Box 12 of 13: 27.0 m to 29.3 m




Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 7 of 7
Borehole ID	BH06	



Box 13 of 13: 29.3 m to 30.0 m (EOH)

Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 1 of 4	
Borehole ID	BH07		

Box 1 of 8: 0.0 m to 2.7 m

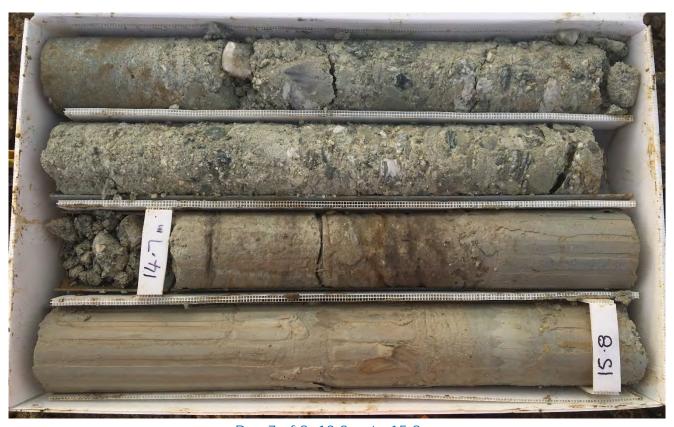
Box 2 of 8: 2.7 m to 4.8 m

Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 2 of 4	
Borehole ID	BH07		

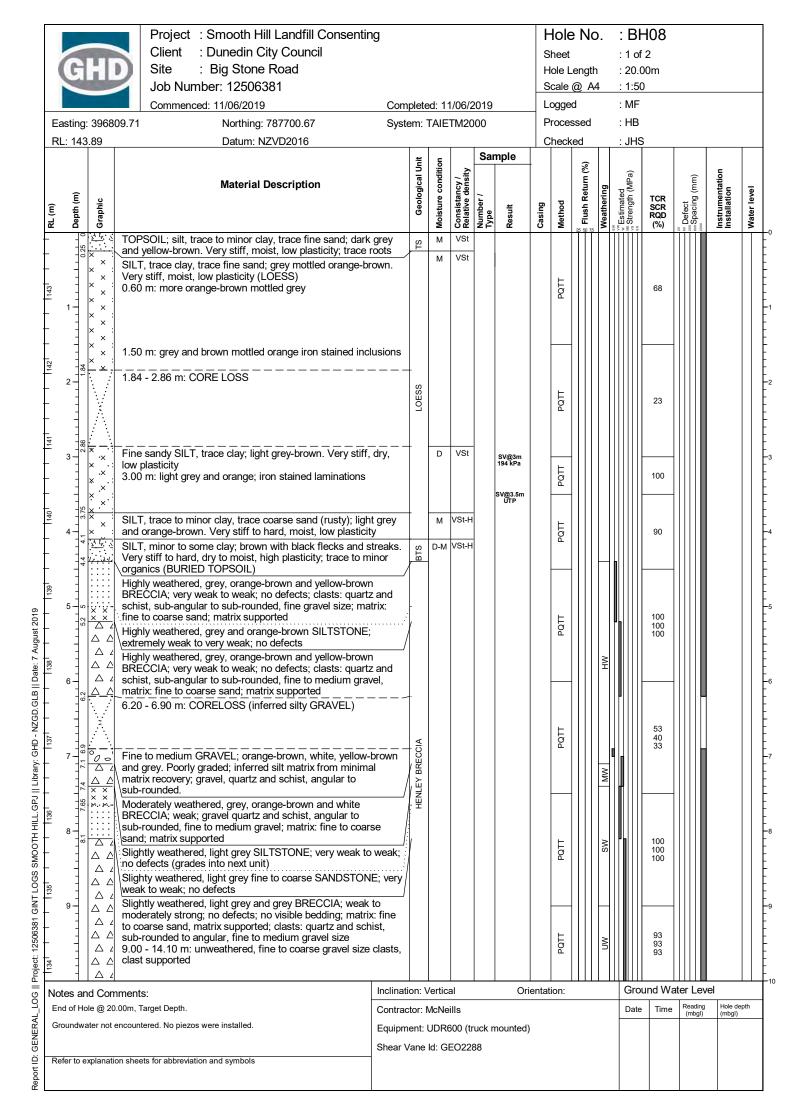
Box 3 of 8: 4.8 m to 7.0 m

Box 4 of 8: 7.0 m to 9.1 m

Project	Smooth Hill Landfill Consenting		
Client	Dunedin City Council		
Job number	12506381	Page 3 of 4	
Borehole ID	BH07		


Box 5 of 8: 9.1 m to 11.2 m

Box 6 of 8: 11.2 m to 13.2 m


Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 4 of 4
Borehole ID	BH07	

Box 7 of 8: 13.2 m to 15.8 m

Box 8 of 8: 15.8 m to 20.0 m (EOH)

Project : Smooth Hill Landfill Consenting Hole No. : BH08 Client : Dunedin City Council : 2 of 2 Sheet Site : Big Stone Road : 20.00m Hole Length Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 11/06/2019 Completed: 11/06/2019 Logged : MF Processed : HB Easting: 396809.71 Northing: 787700.67 System: TAIETM2000 Checked RL: 143.89 Datum: NZVD2016 : JHS Sample Geological Unit Moisture condition 8 Consistancy / Relative density (MPa) Defect Spacing (mm) Flush Return **Material Description** Estimated Strength Number / Method Casing Depth (SCR RQD Δ Slightly weathered, light grey and grey BRECCIA; weak to POT \triangle moderately strong; no defects; no visible bedding; matrix: fine 93 93 to coarse sand, matrix supported; clasts: quartz and schist, Δ sub-rounded to angular, fine to medium gravel size (continued Δ from layer starting at 8.1m) \triangle ΔΔ Δ POTT Δ 11.20 m: fine to medium gravel sized clasts, moderately strong Δ \triangle 11.60 m: fine to coarse gravel clasts, weak to moderately Δ ΔΔ Δ ΔΔ Δ POT Δ Δ HENLEY BRECCIA ΔΔ Δ Δ Δ Δ Δ Δ 14.10 - 14.60 m: CORELOSS POT Unweathered, grey silty fine to medium SANDSTONE; very weak to weak; no defects; no visible bedding GHD - NZGD.GLB || Date: 7 August 2019 100 POT 16.40 m: 100 mm breccia interbed Fine to coarse grained SANDSTONE, moderately strong to strong, with very closely spaced very thin interbeded of gravelly 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: 100 sandstone; fine gravel. POT 17.50 m: weak to moderately strong, moderately well indurated 18 Δ Unweathered, light grey, grey and white BRECCIA; moderately strong to strong; no defects; no visible bedding; matrix: fine to Δ coarse sand; clasts: schist and quartz, angular to sub-rounded, Δ fine to coarse gravel size, clast supported \triangle POT \triangle Δ Δ Δ 19.20 m: clasts predominantly medium to coarse gravel sized Δ Unweathered, light grey fine to coarse SANDSTONE; 100 100 100 PoT || Project: moderately strong to strong; no defects; well indurated; no visible bedding Notes and Comments: Find of Hole @ 20.00m, Target Depth. **Ground Water Level** Inclination: Vertical Orientation: GENERAL_LOG End of Hole @ 20.00m, Target Depth. Contractor: McNeills Time Groundwater not encountered. No piezos were installed. 11/06/19 00:00 20 Equipment: UDR600 (truck mounted) Shear Vane Id: GEO2288 ≘ Refer to explanation sheets for abbreviation and symbols

Report I

Water level

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 1 of 4
Borehole ID	BH08	

Box 1 of 8: 0.0 m to 3.7 m

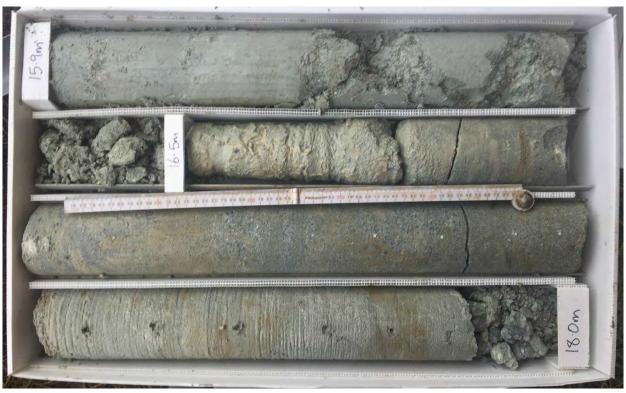
Box 2 of 8: 3.7 m to 5.7 m

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 2 of 4
Borehole ID	BH08	

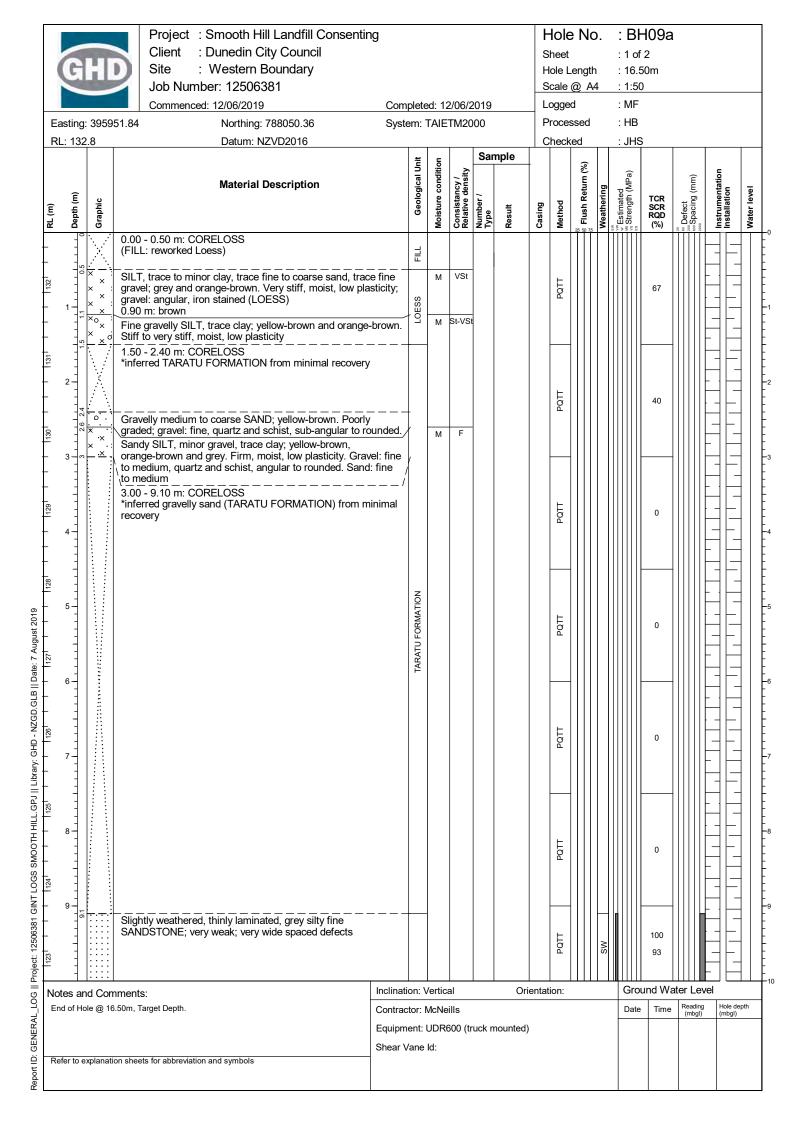
Box 3 of 8: 5.7 m to 8.7 m

Box 4 of 8: 8.7 m to 11.1 m

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 3 of 4
Borehole ID	BH08	


Box 5 of 8: 11.1 m to 13.25 m

Box 6 of 8: 13.25 m to 15.9 m


Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 4 of 4
Borehole ID	BH08	

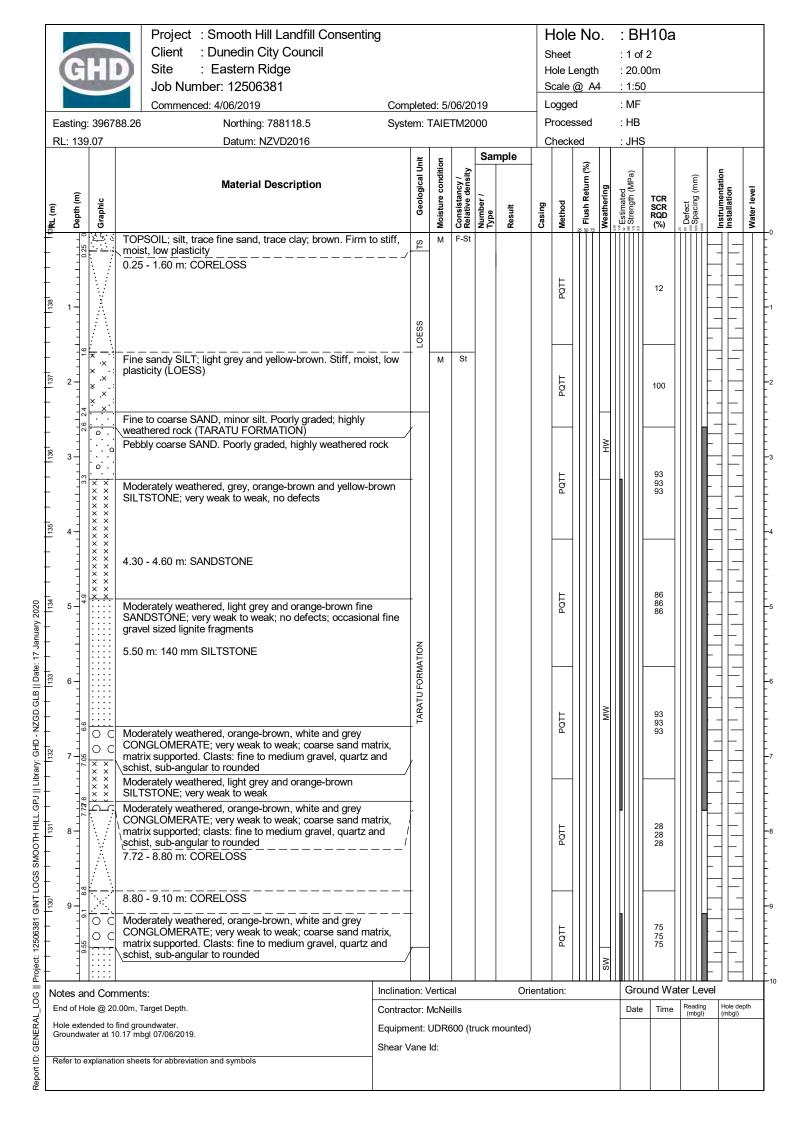
Box 7 of 8: 15.9 m to 18.0 m

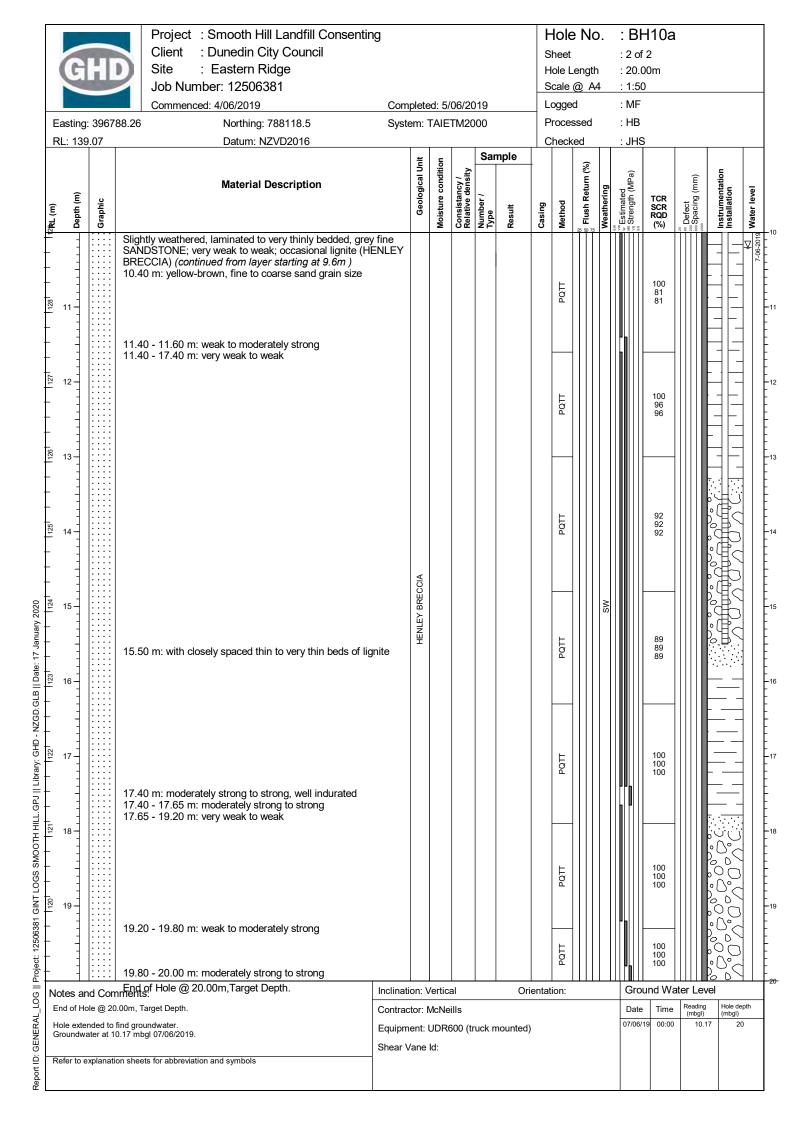
Box 8 of 8: 18.0 m to 20.0 m (EOH)

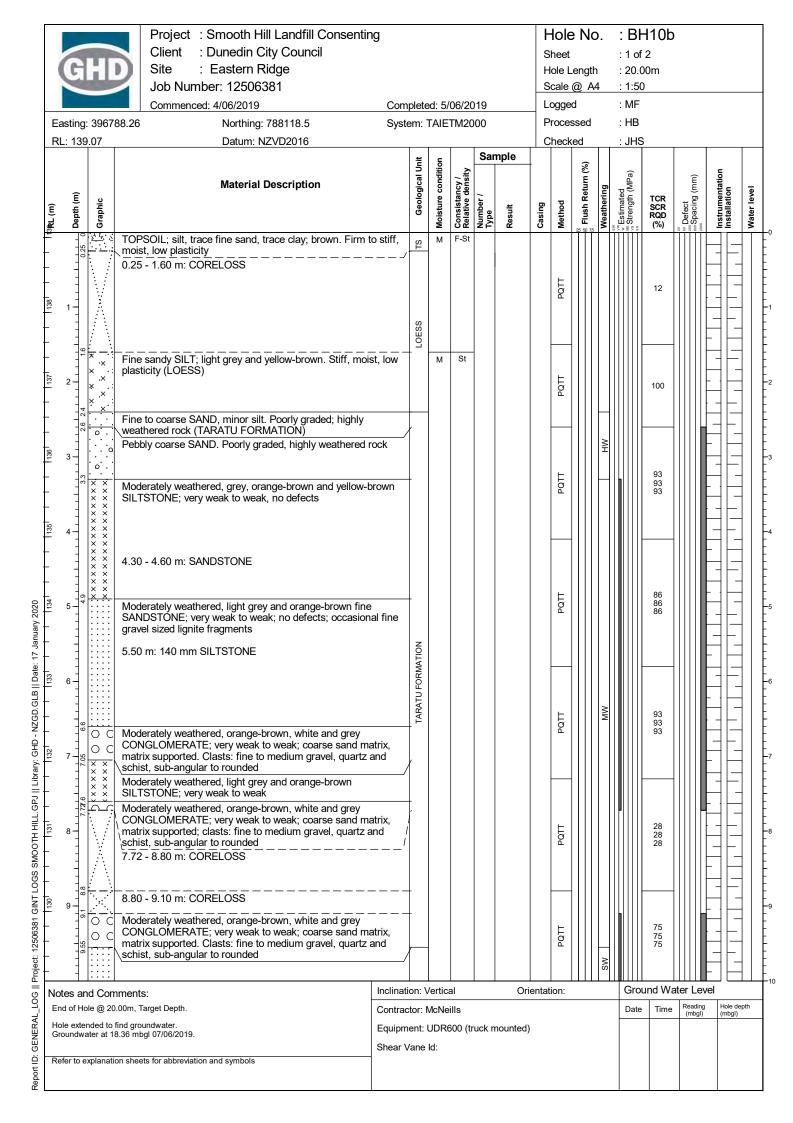
Project : Smooth Hill Landfill Consenting Hole No. : BH09a Client : Dunedin City Council Sheet : 2 of 2 Site : Western Boundary : 16.50m Hole Length Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 12/06/2019 Completed: 12/06/2019 Logged : MF Processed : HB Easting: 395951.84 Northing: 788050.36 System: TAIETM2000 RL: 132.8 Datum: NZVD2016 Checked : JHS Sample **Geological Unit** Moisture condition 8 Consistancy / Relative density Strength (MPa) Flush Return **Material Description** Water level Estimated TCR SCR RQD Depth (m) Number / Method Casing Slightly weathered, thinly laminated, grey silty fine 100 PQTT SANDSTONE; very weak; very wide spaced defects 93 (continued from layer starting at 9.1m) 10.80 m: very weak to weak 100 POTT 11.90 m: extremely to very weak; trace to minor fine gravel: quartz and schist, angular to sub-angular 12.40 - 16.50 m: CORELOSS *minimal silty fine sand and angular to sub-rounded, quartz PoT and schist gravel recovered HENLEY BRECCIA (Inferred weathered breccia) 13 Pot || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 7 August 2019 000 POT End of Hole @ 16.50m, Target Depth. **Ground Water Level** Orientation: Inclination: Vertical Notes and Comments: GENERAL LOG End of Hole @ 16.50m, Target Depth. Date Contractor: McNeills Time 12/06/19 00:00 13.93 16.5 Equipment: UDR600 (truck mounted) Shear Vane Id: ≘ Refer to explanation sheets for abbreviation and symbols Report I

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 1 of 2
Borehole ID	BH09	

Box 1 of 3: 0.0 m to 9.6 m


Box 2 of 3: 9.6 m to 11.7 m




Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 2 of 2
Borehole ID	BH09	

Box 3 of 3: 11.7 m to 16.5 m (EOH)

: BH10b Project : Smooth Hill Landfill Consenting Hole No. Client : Dunedin City Council Sheet : 2 of 2 Site : Eastern Ridge : 20.00m Hole Length Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 4/06/2019 Completed: 5/06/2019 Logged : MF Processed : HB Easting: 396788.26 Northing: 788118.5 System: TAIETM2000 RL: 139.07 Checked Datum: NZVD2016 : JHS Sample **Geological Unit** Moisture condition 8 Consistancy / Relative density Strength (MPa) Spacing (mm) Flush Return **Material Description** Weathering Water level Estimated TCR SCR RQD Depth (m) Number Method Defect Casing Slightly weathered, laminated to very thinly bedded, grey fine SANDSTONE; very weak to weak; occasional lignite (HENLEY BRECCIA) (continued from layer starting at 9.6m) 10.40 m. yellow-brown, fine to coarse sand grain size 100 81 81 POT 11.40 - 11.60 m: weak to moderately strong 11.40 - 17.40 m: very weak to weak Pot POT HENLEY BRECCIA GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 17 January 2020 89 89 89 POTT 15.50 m: with closely spaced thin to very thin beds of lignite POT 17.40 m: moderately strong to strong, well indurated 17.40 - 17.65 m: moderately strong to strong 17.65 - 19.20 m: very weak to weak POT 19.20 - 19.80 m: weak to moderately strong 100 POTT 19.80 - 20.00 m: moderately strong to strong Notes and Comments: Ground Water Level Inclination: Vertical Orientation: End of Hole @ 20.00m, Target Depth. Contractor: McNeills Time Hole extended to find groundwater. Groundwater at 18.36 mbgl 07/06/2019. 07/06/19 00:00 18.36 20 Equipment: UDR600 (truck mounted) Shear Vane Id: ≘ Refer to explanation sheets for abbreviation and symbols Report I

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 1 of 4
Borehole ID	BH10	

Box 1 of 8: 0.0 m to 3.2 m

Box 2 of 8: 3.2 m to 5.8 m

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 2 of 4
Borehole ID	BH10	

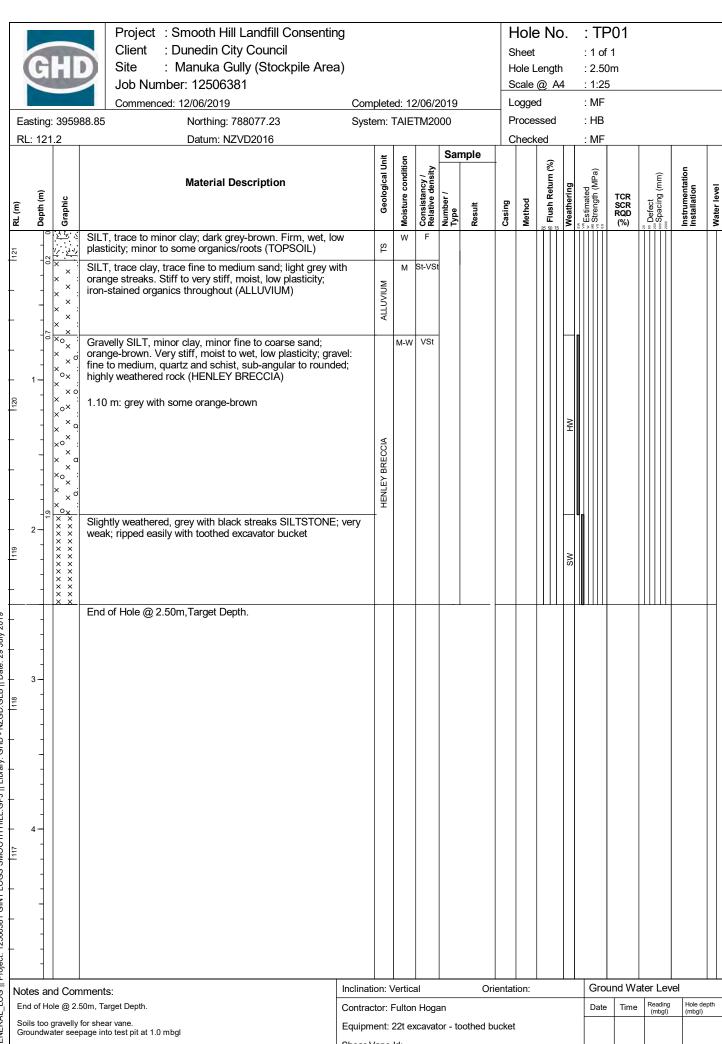
Box 3 of 8: 5.8 m to 9.2 m

Box 4 of 8: 9.2 m to 11.6 m

Project	Smooth Hill Landfill Consenting	
Client	Dunedin City Council	
Job number	12506381	Page 3 of 4
Borehole ID	BH10	

Box 5 of 8: 11.6 m to 13.8 m

Box 6 of 8: 13.8 m to 16.0 m


Project	Smooth Hill Landfill Conse	enting
Client	Dunedin City Council	
Job number	12506381	Page 4 of 4
Borehole ID	BH10	

Box 7 of 8: 16.0 m to 18.4 m

Box 8 of 8: 18.4 m to 20.0 m (EOH)

GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 29 July 2019 ≘ Report I

Refer to explanation sheets for abbreviation and symbols

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council

Site : Manuka Gully (Stockpile Area)

Job Number: 12506381

Commenced: 12/06/2019 Easting: 396103.5 Northing: 788056.91 Completed: 12/06/2019

System: TAIETM2000

Hole No. : TP02 Sheet : 1 of 1

Hole Length : 2.60m Scale @ A4 : 1:25

Logged : MF Processed : HB

	g: 3961	_	System:	IAIL	: IM20	JUU			roces			: HB				
RL: 11	0.4	Datum: NZVD2016			Τ	Sai	mple	C	heck	ed		: MF				Ι
RL (m) Depth (m)	Graphic	Material Description	Geological Unit	Moisture condition	Consistancy / Relative density	Number / Type		Casing	Method	Flush Return (%)	Weathering	Estimated Strength (MPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation	Water level
			TOPSOIL	M	F		SV@0.3m 65/17 kPa			25 50 7	5	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		20 00 00 00 000 000 000 000		Groundwater seepage into test int at 0.4 mbd
1-	× · · · × · · · · × · · · · · × · · · ·	Silty SAND, trace clay; light grey with orange-brown streaks 'Loose to medium dense', poorly graded; sand: fine (COLLUVIUM)	S. COFTINNINW		'L-MD											Groundwater
2-		low plasticity; wood fragments throughout layer, most at top (BURIED TOPSOIL)	BURIED TOPSOIL	М	F		SV@1.8m 90/33 kPa									
	× × × × × × × × × × × × × × × × × × ×		ALLUVIUM	W												
4	× × × × × × × × × ×	Slightly weathered, grey SILTSTONE; ripped easily with toothed bucket (HENLEY BRECCIA)	里								SW					
3		End of Hole @ 2.60m, Target Depth.														
	<u> </u>	<u> </u>	aline#	/a	nal .		<u> </u>					C	und \^'	ator Lass	ol.	
		Timorito.	clination: \			an.	Ori	entati	ion:			Gro		ater Lev	Hole de	epth
			ontractor:				oothed L	uoko+				12/06		(mbgl)	(mbgl)	.6
Jiounul	value set	Prago into tost pit at 0.4 mbgr.	quipment:	22t e	xcavat	or - to	oothed b	ucket					30.00		-	•

Report ID: GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 29 July 2019

12/06/19 00:00 Groundwater seepage into test pit at 0.4 mbgl. Equipment: 22t excavator - toothed bucket Shear Vane Id: GEO2288 Refer to explanation sheets for abbreviation and symbols

Project : Smooth Hill Landfill Consenting Client : Dunedin City Council Site : Manuka Gully (Stockpile Area) Job Number: 12506381 Commenced: 12/06/2019 Report ID: GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL. GPJ || Library: GHD - NZGD.GLB || Date: 29 July 2019

Refer to explanation sheets for abbreviation and symbols

: TP03 Hole No. Sheet : 1 of 1

Completed: 12/06/2019

: 2.00m Hole Length Scale @ A4 : 1:25

Logged : MF

			3962		Syste	m: ¯	TAIE	TM20	00			roces				НВ 45				
	KL:	102	.61	Datum: NZVD2016		Ħ	_		San	nple		heck			: r	ИF.				
RL (m)		Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Number / Type	Result	Casing	Method	Flush Return (%)	Weathering	Estimated	Strength (MPa)	TCR SCR RQD (%)	"Defect "Spacing (mm)	Instrumentation Installation	Water level
102		0		SILT, trace to minor fine sand, trace to minor clay; brown Soft, moist to wet, low plasticity; minor organics/roots (TOPSOIL)	1.	TOPSOIL	M-W	Ø					25 50 7:		W > 51	: > w		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
101	1	1.2 1.0	× · · · × · · · · × · · · · × · · · · × · · · × · · · · · × ·	Silty SAND, trace clay; light grey with brown streaks. Moispoorly graded; sand is fine (ALLUVIUM) Gravelly SILT; grey. Wet to saturated, well graded; gravel to coarse		ALLUVIUM	M W - S													12-06-2019 Groundwaler encountered at 12 mbgl ,
	2		× × × × × × × × × ×	Slightly weathered, grey SILTSTONE; extremely to very wind defects - ripped easily (HENLEY BRECCIA) End of Hole @ 2.00m, Target Depth.	veak;	HB HB								SW						- - -
1 198	3																			-3
₌	otes	an	d Con	nments:	Inclination	on: V	l /ertica	al		Ori	entat	l ion:				Grou	nd Wa	ter Leve	el	5
E	nd o	of Ho	le @ 2.0	00m, Target Depth.	Contract Equipme					othed bu	ucket					Date 2/06/19	Time 00:00	Reading (mbgl)	Hole de (mbgl)	
5				-	Shear V	ane	ld:													

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Southwest Gully Base

Job Number: 12506381

Commenced: 13/06/2019

Completed: 13/06/2019

Hole No. : TP05 Sheet : 1 of 1 Hole Length : 3.30m

Scale @ A4 : 1:25 Logged : MF

RL:	_	39628	11 Northing: 787868 Datum: NZVD2016	Systen	II. I	*IE	ı ıvı∠C				roce: heck				HB MF			T	_
RL (m)	Depth (m)	Graphic	Material Description	:	Geological Unit	Moisture condition	Consistancy / Relative density		Result	Casing	Method	Flush Return (%)	Weathering	***Estimated	strength (MPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation	Water level
	0	2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	SILT, minor clay; brown. Soft, wet to saturated, low pla minor organics throughout (TOPSOIL)			W-S	S					25 50 7	5		. > 11		2 6 2 6 2		
t.	0.7	× . × . × .	Silty fine to medium SAND; grey and yellow-brown. 'Lo wet, poorly graded (COLLUVIUM)	ose',		W	'L'												
- 1	-		Fine to coarse SAND, minor to some silt; grey with black streaks. 'Loose', saturated, poorly graded; organics through the stream of the stream		COLLUVIUM	S	'L'												
	3 1 1 4		Tree trunks and branches with some gravel. Groundwa outflow from base of layer	ater	ŏ														
27 2		× × ; × × ; × × ; × × ; × × ; × × ; × × ; × × ;	SILT, minor clay, trace fine sand; grey with yellow-brow streaks. Stiff, moist, low plasticity; highly weathered roc (HENLEY BRECCIA)	ck	HENLEY BRECCIA	М	St						MH						<u>\</u>
<u>†</u> - 3	-	× × × × × × × × × × × × × × × × × × ×	Slightly weathered, SILTSTONE; ripped easily		HENE								MS						
		× × .	End of Hole @ 3.30m, Target Depth.																
	-																		
	s an	d Com	ments:	Inclination	n: Ve	ertica	al	<u> </u>	Or	ientat	ion:	<u> </u>			Gro	und Wa	ater Le	vel	\perp
	of Ho	le @ 3.3	0m, Target Depth. n sheets for abbreviation and symbols	Contracto Equipmer Shear Var	nt: 22	2t ex			oothed b	ucket					Date 3/06/1		Reading (mbgl)	(mbg	depth) 3.3

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council

: Gully East of Central Ridge Site

Job Number: 12506381

Commenced: 13/06/2019

Completed: 13/06/2019

Scale @ A4 : 1:25 Logged : MF

Hole No.

Hole Length

Sheet

: TP06

: 1 of 1

: 2.50m

RL	: 108	3.24	Datum: NZVD2016		- 1			0	mnla	<u>C</u>	heck	ed	_	Т	: MF	: 				\top
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	dumber /	Result aldu	Casing	Method	Flush Return (%)	Woathoring	veamering	**Estimated **Strength (MPa)	TCR SCR RQD (%)	Defect	200 Spacing (mm)	Instrumentation Installation	Water level
000	0	· · · · · · · · · · · · · · · · · · ·	Organic SILT, minor clay; dark brown-grey. Firm, moist, plasticity; minor to some roots (TOPSOIL)	low	TOPSOIL	M	F				_	25 50	75	A3	A & & & & & & & & & & & & & & & & & & &	(70)	20	200		
	0.5	× × × × × × × × × × × × × × × × × × ×	SILT, minor clay, light grey with orange-brown streaks. Smoist, low plasticity; minor organic inclusions (ALLUVIU	Stiff, JM)		М	St													
5	1-	× : × × : × × : × × : × × :			IUM															
		× × × × × × × × × × × × × × × × × × ×			ALLUVIUM															
	2-	× : × : × : × : × :																		
	1	× × × × × ×	SILTSTONE; difficult to rip (HENLEY BRECCIA) End of Hole @ 2.50m, Target Depth.		띺															Ш
2	3																			
Vote	es ar	d Con	nments:	Inclinatio	n: V	ertica	al		Or	ientat	ion:				Gro	und V	/ Vater	Leve	el	
End	d of Ho	ole @ 2.	on sheets for abbreviation and symbols	Contracto Equipme Shear Va	nt: 2	2t ex			oothed b	ucket					Dat		(eading (mbgl)	Hole de (mbgl)	epth 2.5

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Southwest Gully Base

Job Number: 12506381

Hole No. : TP07 Sheet

: 1 of 1 : 2.50m Hole Length Scale @ A4 : 1:25

				Commenced: 28/05/2019		omplete						ogge				ИF				
Easting		39618	2	Northing: 787790	S	ystem:	TAIE	TM20	000			roces			: H					
RL: 12	20			Datum: NZVD2016		1	_		Sai	mple	C	heck	ed		: N	ИF 				Τ
RL (m) Depth (m)		Graphic		Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Number / Type		Casing	Method	ଞ୍ଚ Flush Return (%)	Weathering	*** Estimated	Strengtn (MPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation	
- - -	_	3 1/2 <u>`</u>	SIL [*]	T/organic matter, brown. Soft, moist to saturated, for plastic (TOPSOIL)	fibrous,	TOPSOIL	M-W						- Q SQ 7					X 0 0 0 0		
	0.5 × × × × × × × ×	X	SIL	T, minor clay, trace fine sand; light grey and yellow f to very stiff, moist, low plasticity (LOESS)	/-brown	LOESS	M	St-VS	t			ТР								
		× × × × × × × × × × × × × × × × × × ×	Slig	ntly weathered, grey SILTSTONE; weak to modera ong; no defects (HENLEY BRECCIA)	ately	HENLEY BRECCIA								SW						Ā
3-				ECCIA d of Hole @ 2.50m,Target Depth.																
Notes a				i ts: Target Depth.		nation: \tractor:			an	Oı	rientat	ion:			_	Grou	nd Wa	Readin	Hole de	epti
				eets for abbreviation and symbols	Equi		22t ex			mooth t	oucket					8/05/19		(mbgl)	(mbgl)	2.5

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council

Site : Gully Between Southern Ridges

Job Number: 12506381

Commenced: 28/05/2019 Completed: 28/05/2019 Hole No. : TP08 Sheet : 1 of 1

: 4.50m Hole Length Scale @ A4 : 1:25

Logged : MF

Eas	stina	j: 396	303	Commenced: 28/05/2019 Northing: 787682				3/05/2 TM20				ogge roce:			: N : H					
	: 115			Datum: NZVD2016	-,							heck			: N					
RL (m)	Depth (m)	Graphic		Material Description		Geological Unit	Moisture condition	consistancy / Relative density	Number / Type	Result	Casing	Method	Flush Return (%)	Weathering	*** Estimated	TCR SCR RQE (%)	Defect	see Spacing (mm)	Instrumentation Installation	
<u>-</u>	<u> </u>		SIL	T, minor clay, trace fine sand; dark grey. Firm to st st, low plasticity;, minor organic matter (FILL)	tiff,		M	F-St	2-	Œ.		2	25 50 7	, >	EW VWW	S (76)	20	200	_==	T
	-					FILL														
	0.6			0 m: grass and trees - buried surface, saturated	tiff wet		S	F-St	-											
<u>+</u>	1-	\(\frac{1}{12}\)\(\frac{1}{12}	low	T, minor clay, trace fine sand; dark grey. Firm to si plasticity; trace to minor organics (BURIED TOPS	uir, wet,	BURIED TOPSOIL	W	F-51												
	2 -	× × × × × × × × × × × × × × × × × × ×	: yell	T, minor to some clay, trace fine sand; light grey a ow-brown. Stiff to very stiff, moist, low plasticity; tr anics (LOESS)	nd ace		М	St-VSI	- t											
	3-	× × × × × × × × × × × × × × × × × × ×				LOESS														
	4-	× × × × × × × × × × × × × × × × × × ×	SIL: very sch	T, some coarse sand, minor fine gravel; light grey. y stiff, moist, non-plastic; gravel comprises quartz a ist; highly weathered rock (HENLEY BRECCIA)	Stiff to and	HENLEY BRECCIA	М	St-VSI						HW						
	- - - - -	×	Enc	d of Hole @ 4.50m,End of Reach.									1 1					1		
Note	es ar	nd Co	mmen	ts:	Inclinat	l tion: ∖	l /ertica	l <u> </u>	<u> </u>	Or	ientat	l ion:			G	Fround \	 Vater	Lev	el	1
				End of Reach.	Contract Equipm	nent: 2	22t ex	_		mooth b	oucket					Pate Tin /05/19 00	(eading (mbgl)	Hole de (mbgl)	ері 1.5

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : South East Gully Outflow

Job Number: 12506381

Commenced: 13/06/2019 Completed: 13/06/2019 Hole No. : TP09 Sheet : 1 of 1

: 3.00m Hole Length : 1:25 Scale @ A4

Logged : MF ME

Eas	stin	g: 39	9657	7.97 Northing: 787947.86	Syste	m: ·	TAIE	TM20	000		P	roce	ssed		: N	ΛF				
RL:	10	1.04	1	Datum: NZVD2016	1				1_		c	heck	ced		: N	/F	T		1	
KL (III)	Depth (m)	Granhic	Grapme	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density		Result	Casing	Method	Flush Return (%)	Weathering	Estimated	s Surengui (iMPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation	Installation
-	-	° × × ×		SILT, minor fine to coarse gravel; yellow-brown and gre moist, low plasticity; minor organic content (SLIP DEBI	ey. Stiff, RIS)	SLIP DEBRIS	M	St				_	25 50 75		EV VV VV VV VV VV VV VV VV VV VV VV VV V	88 88	(79)	20	200	
	- ;	0 <u>11</u>		Branches and grass (BURIED VEGETATION) SILT, minor clay; brown. Firm to stiff, moist, low plastic (BURIED TOPSOIL)	ity	BTS	М	F-St	_											
8	-¦; - 1-	// X · · × · o		Gravelly silty SAND; orange-brown. Moist, poorly grade gravel is fine; sand is fine to coarse (ALLUVIUM)			М	-												
-	'	× × × ×	. ×	1.00 m: light grey and orange-brown 1.30 m: light grey with orange-brown streaks																
	-	×	. ×			ALLUVIUM														
0	2-	×	8			∢														
	-	× · · × · · ×	·																	
	- ;	2.7	. a	Fine SANDSTONE; easily ripped (HENLEY BRECCIA)	1	뮢														
· · · · · · · · · · · · · · · · · · ·	3 -		••	End of Hole @ 3.00m,Target Depth.																
	-																			
6	4 -																			
	-				In the second		/- · ·									`	nd \^/ -	torl) (c)	
				nents: m, Target Depth.	Inclination		ertica	al		- 0	rientat	uon:				ate	nd Wa	Readii	ng H	lole depth
				m, rarger மepm. of gully base - too boggy in gully base to excavate	Contrac		22t ⊏¹	XC3//0	tor						-	ale.	rime	(mbg	l) (r	nbgl)
		J -		30, 3,	Shear V			nuavä	iOI											
Refe	er to	expla	anatio	sheets for abbreviation and symbols	Jonean V	ane	ıu.													

Easting: 396820.11

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Future Laydown Area

Job Number: 12506381

Commenced: 10/06/2019 Northing: 788079.25

Completed: 10/06/2019

: TP10 Hole No. Sheet : 1 of 1 : 3.60m Hole Length

Scale @ A4 : 1:25 Logged : MF

RL	: 140	.74	Datum: NZVD2016							l c	heck	ed		: M	F	-			_
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density		Result Tesult	Casing	Method	Flush Return (%)	Weathering	*** Estimated	TO SO RO	CR CR CR QD	200 2000 Defect 800 Spacing (mm)	Instrumentation Installation	Water level
		1/2 3 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SILT, trace to minor clay, trace fine sand; dark grey. V moist, low plasticity; tree roots throughout (TOPSOIL)	ery stiff,	TOPSOIL	M	VSt					25 50 7			Ü	,	000000000000000000000000000000000000000		Í
2	100	× ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	SILT, minor clay; light grey and yellow-brown. Very sti low plasticity; root webs throughout (LOESS)	ff, moist,		М	VSt		SV@0.5m 136/62 kPa										
	1-	× ; × ; × ; × ;							SV@1m 194 kPa										
		× ; × ; × ; × ;	SILT, minor fine sand, trace clay; orange-brown and li Very stiff, dry, low plasticity	ght grey.		D	VSt		SV@1.5m 194 kPa										
801	2-8	× × ; × × ; × × ; × × ;	CILT minor fine cond trace along	otiff -l	LOESS	٥	1/64		SV@2m 194 kPa										
	22	× ;	SILT, minor fine sand, trace clay; orange-brown. Very low plasticity; iron-stained horizon			D	VSt	72.20	194 kPa										
000		× ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	SILT; orange-brown and grey alternating. Very stiff, dr non-plastic	y,		D	VSt	010101010101010101010	SV@2.5m UTP										
	3 - 6	× × × × × × × × × × × × × × × × × × ×	Highly weathered SILTSTONE (HENLEY BRECCIA) 3.00 - 3.60 m: hard, root webs visible in places		HENLEY BRECCIA		Н	0000000000000	SV@3m UTP SV@3.5m UTP				МН						
	4-	× ×	End of Hole @ 3.60m,Target Depth.					3.60											
000	-																		
	1																		
			nments:	Inclinati					Ori	entati	on:			Gr			ter Lev		
EOH	H at 3.	6 mbgl,	60m, Target Depth. too hard to dig/end of reach. encountered.	Contract Equipm Shear \	ent: 2	22t ex	cavat	or						Da	ite 1	Time	Reading (mbgl)	Hole de (mbgl)	pth
Refe	er to e	xplanati	on sheets for abbreviation and symbols																

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Future Laydown Area

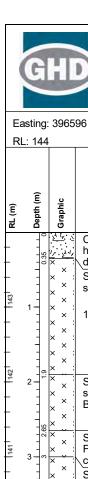
Job Number: 12506381

Commenced: 10/06/2019

Completed: 10/06/2019

: TP11 Hole No. Sheet : 1 of 1 Hole Length : 3.80m Scale @ A4 : 1:25

Logged : MF


	141	: 3969 .24 	07.03 Northing: 788032.98 Datum: NZVD2016		I	TAIE			mnla	C	heck	ed	_	: MF	: T			$\overline{}$
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density		Result aldu	Casing	Method	Flush Return (%)	Weathering	***Estimated	TCR SCR RQD (%)	"Defect "Spacing (mm)	Instrumentation Installation	Water level
- - - -	0	12 - 2 - 17 - 12 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	SILT, trace to minor clay, trace fine sand; dark grey a orange-brown. Very stiff, moist, low plasticity; tree ro to approximately 1.2 m bgl (TOPSOIL)	and oots extend	TOPSOIL	M	VSt			-		25 50 7	5 7	N	(79)	20 60 70 70 60 60 60 60 60 60 60 60 60 60 60 60 60		
	- 100	× : × : × : × : × :	SILT, trace to minor clay; grey with orange-brown str Very stiff, moist, low plasticity (LOESS)	reaks.		М	VSt	•	SV@0.5m 140/36 kPa									
1	1-	×							SV@1m 194 kPa									
	-	× × × × × × × × × × × × × × × × × × ×	SILT, trace clay; light grey/white and orange-brown. dry, low plasticity; powdery when crumbled, iron-stair throughout; strength increases with depth	Very stiff, ning	LOESS	D	VSt	1.50	SV@1.5m 194 kPa									
2	2-	× : × : × : × : × : × :	1.80 m: 50-100 mm iron-stained layer. 2.00 m: 50-100 mm iron-stained layer.					(0)(0)(0)(0)(0)(0)(0)	SV@2m UTP									
	2.6	× : × : × : × : × × : × × × × × × × × ×	Highly weathered, orange-brown SILTSTONE (HENL BRECCIA) 2.70 m: light grey and orange-brown	LEY				200000000000000000000000000000000000000	SV@2.8m UTP									
3	3-	× × × × × × × × × × × × × × × × × × ×	3.00 m: grey and orange-brown.		HENLEY BRECCIA			000000000000000000000000000000000000000					МН					
. 4	1-	× × × × × × × × × × × × × × × × × × ×	End of Hole @ 3.80m, Target Depth.					3.50	SV@3.7m UTP									
2																		
Note	s ar	nd Com	nments:	Inclinat	ion: \	/ertica	al	<u> </u>	Ori	entati	ion:			Gro	ound W	ater Lev	/el	ш
End EOH Grou	of Ho I at 3. Indwa	ole @ 3.8 .08 mbgl ater not e	30m, Target Depth. , too hard to excavate. encountered. on sheets for abbreviation and symbols	Contract Equipm Shear	ent:	22t ex	cavat	or						Dat		(Hibgi)	(mbgl)	epth

Project : Smooth Hill Landfill Consenting Hole No. : TP12 Client : Dunedin City Council Sheet : 1 of 1 Site : Future Laydown Area : 4.40m Hole Length Job Number: 12506381 Scale @ A4 : 1:25 Commenced: 10/06/2019 Completed: 10/06/2019 Logged : MF Processed : HB Easting: 396596.93 Northing: 787986.46 System: TAIETM2000 RL: 142.28 Datum: NZVD2016 Checked : MF Sample **Geological Unit** Moisture condition 8 Consistancy / Relative density Strength (MPa) Defect Spacing (mm) Flush Return **Material Description** Water level Weathering Estimated TCR SCR RQD Depth (m) Number / Method Casing SILT, minor clay, trace fine sand, dark grey and brown. Stiff to very stiff, moist, low plasticity. Trace to minor roots (FILL) 분 3V@0.4m 139/44 kPa Sandy SILT, grey. Very stiff, dry, non-plastic; some large roots extend to approximately 1.2 m bgl; trace organics; sand is fine D VSt (BURIED TOPSOIL). V@1m UTP Sandy SILT; light grey, light yellow-brown and orange-brown. D VSt Very stiff, dry, non-plastic; sand is fine; occasional roots to 1.2 m bgl; strength increases with depth (LOESS) SV@2m UTP LOESS 2.50 m: 50-100 mm iron-stained layer Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 29 July 2019 ·×. × ·× 3.60 m: 50-100 mm iron-stained layer .× Highly weathered, SILTSTONE (HENLEY BRECCIA) 兕 V@4.4m UTP End of Hole @ 4.40m, Target Depth. **Ground Water Level** Orientation: Inclination: Vertical Notes and Comments: GENERAL LOG End of Hole @ 4.40m, Target Depth. Contractor: Fulton Hogan Date Time EOH at 4.4 mbgl, deepest excavator could excavate soil. Groundwater not encountered. 10/06/19 00:00 4.4 Equipment: 22t excavator Shear Vane Id: GEO2288

≘

Report I

Refer to explanation sheets for abbreviation and symbols

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Southern Boundary

Job Number: 12506381

Commenced: 29/10/2019 Completed: 1/11/2019

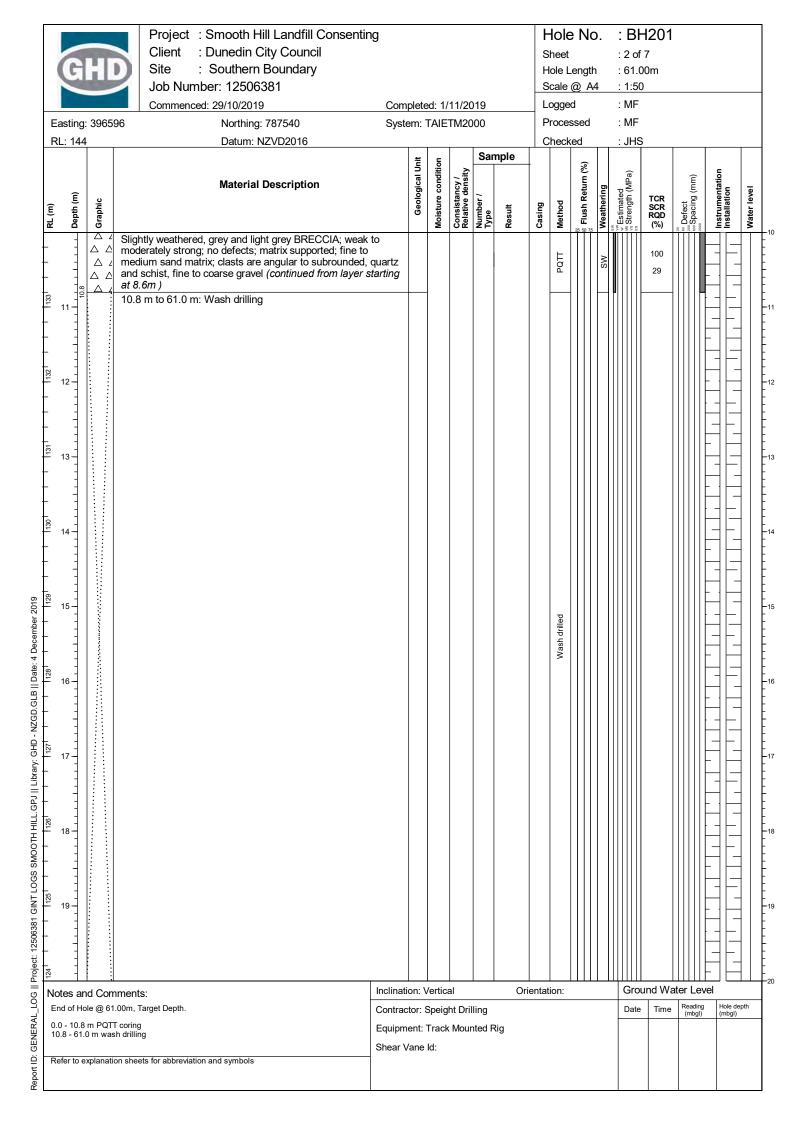
Logged : MF : MF

: BH201

: 1 of 7

: 1:50

: 61.00m


Hole No.

Hole Length

Scale @ A4

Sheet

	·	3965	96 Northing: 787540 Datum: NZVD2016			TAIE					roces			: MI			
RL (m)	Depth (m) 144	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density		Result	Casing	Method	Flush Return (%)	Weathering	w Estimated ∴ Strength (MPa) ☐		"Defect "Spacing (mm)	Instrumentation Installation
<u>~</u>	ءَ ۔	71.1	Clayey SILT, trace fine sand; dark grey. Soft, moist to high plasticity; minor to some organic matter, reducing	wet,	TS.	M-W	S	žΓ	œ	Ö	Σ	25 50 75	>		ű (%)	200 200000 2	
143	98.0 1	× × × × × × × × × × × × × × × × × × ×	depth (TOPSOIL) SILT, minor clay, trace fine sand; grey and orange-brostiff, moist, low plasticity (LOESS) 1.00 - 1.90 m: grey and brown	,	COESS	M	VSt				PQTT				100	_	
741	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	× ; × ; × ; × ; × ;	SILT, trace clay; light grey with orange-brown streaks stiff, moist, non-plastic; completely weathered (HENL BRECCIA)	. Very EY		М	VSt				PQTT		~		96		
1141	3 - 8	× ; × ; × ;	SILT, some clay to clayey; red-brown, orange-brown a Firm to stiff, moist, high plasticity; minor rock fragmer completely weathered	nts;		М	F-St VSt-H	-					Q			_	
. 041	4-1-1-38	× ;	SILT, trace to minor clay; red-brown. Very stiff to hard low plasticity; completely weathered Moderately weathered, grey and yellow-brown, moder thickly bedded, fine to medium grained SANDSTONE weak; very widely spaced defects	ately							PQTT				100		
	5 - 5	\(\times \) \(\t	4.20 - 5.00 m: fine to coarse sand 4.60 BP, 10°, pl, r, Fe-stained, black 4.90 - 5.00 m: grades into breccia Moderately weathered, brown, grey, orange-brown an red-brown BRECCIA; extremely to very weak; very wis spaced defects; matrix supported; fine sandy silt matr	dely							РОТТ		MW		88		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2	3.45		are angular to subrounded, quartz and schist, fine to gravel. Soil description: fine to coarse gravelly, fine sa 6.12 JT, 15°, pl, r, clean	coarse	HENLEY BRECCIA											-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	7-		6.15 JT, 85°, pl, r, clean 6.17 JT, 20°, pl, r, clean 6.30 - 6.45 m: transition from moderately to slightly w Slightly weathered, grey and light grey BRECCIA; ver weak; no defects; matrix supported; fine sand matrix; are angular to subrounded, quartz and schist, fine to	y weak to clasts							РОТТ				70	-	
	8.6		gravel 7.00 - 7.90 m: weak to moderately strong 7.20 - 7.90 m: clast supported 7.50 - 7.90 m: medium to coarse gravel Slightly weathered, grey and light grey BRECCIA; extruction weak; no defects; matrix supported; fine to medium	remely to	/						РОТТ		SW		100		
	9-1		matrix; clasts are angular to subrounded, quartz and sine to coarse gravel. Soil description: fine to coarse gine sandy silt Slightly weathered, grey and light grey BRECCIA; weathered, grey and light grey BRECCIA; was moderately strong; no defects; matrix supported; fine medium sand matrix; clasts are angular to subrounde and schist, fine to coarse gravel 9.10 - 9.35 m: 250 mm light grey, fine grained SAND	gravelly, ak to to d, quartz							РОТТ				100	-	0.7.0.7.0
<u>≸</u> Note	es ar	△ △ id Con	nments:	Inclinat	ion: \	Vertica Vertica	al		Or	ientat	ion:	<u> </u>		Gr	 ound W	ater Le	lon Survel
0.0 10.8	- 10.8 8 - 61.	m PQT 0 m wa	I.00m, Target Depth. T coring sh drilling on sheets for abbreviation and symbols	Contract Equipm Shear \	ent:	Track		_	Rig					Da	te Tim	Reading (mbgl)	

: BH201 Project : Smooth Hill Landfill Consenting Hole No. Client : Dunedin City Council Sheet : 3 of 7 Site : Southern Boundary Hole Length : 61.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 29/10/2019 Completed: 1/11/2019 Logged : MF System: TAIETM2000 Processed : MF Easting: 396596 Northing: 787540 RL: 144 Checked Datum: NZVD2016 : JHS Sample **Geological Unit** Moisture condition 8 Estimated Strength (MPa) Consistancy / Relative density Flush Return **Material Description** Weathering Depth (m) TCR SCR RQD Number / Method Casing 10.8 m to 61.0 m: Wash drilling (continued from layer starting Wash drilled GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 4 December 2019 25

Notes and Comments: End of Hole @ 61.00m, Target Depth.

Report ID:

0.0 - 10.8 m PQTT coring 10.8 - 61.0 m wash drilling

Refer to explanation sheets for abbreviation and symbols

Inclination: Vertical Orientation:

Contractor: Speight Drilling

Equipment: Track Mounted Rig

Shear Vane Id:

Ground Water Level

Reading (mbgl) Date Time

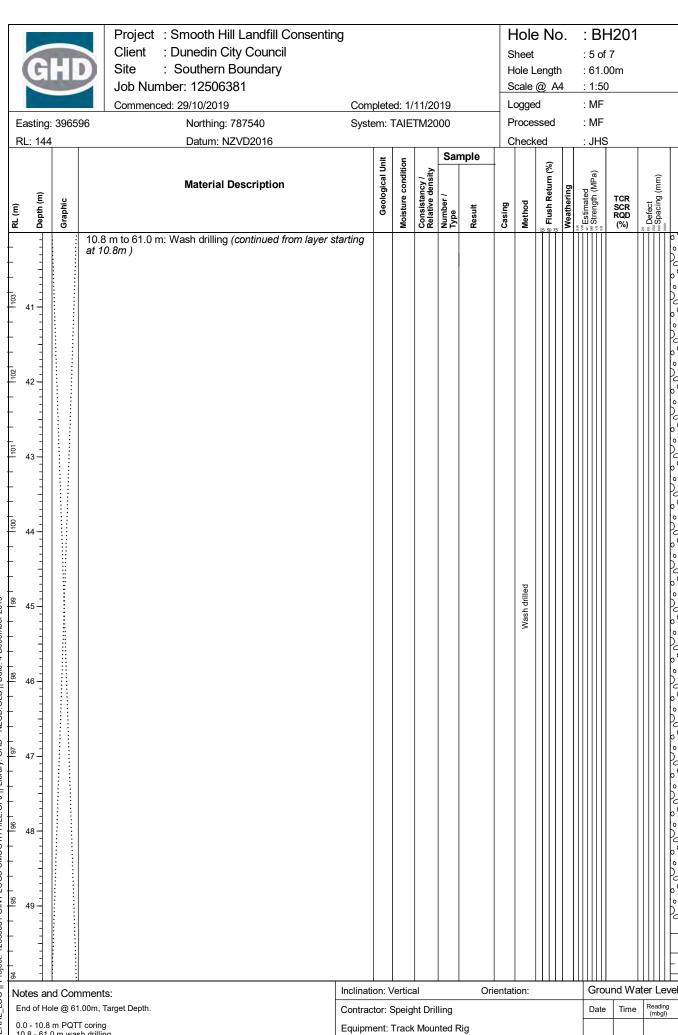
Defect Spacing (mm)

Water level

: BH201 Project : Smooth Hill Landfill Consenting Hole No. Client : Dunedin City Council : 4 of 7 Sheet Site : Southern Boundary Hole Length : 61.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 29/10/2019 Completed: 1/11/2019 Logged : MF System: TAIETM2000 Processed : MF Easting: 396596 Northing: 787540 RL: 144 Checked Datum: NZVD2016 : JHS Sample **Geological Unit** Moisture condition 8 Estimated Strength (MPa) Consistancy / Relative density Flush Return **Material Description** Weathering Depth (m) TCR SCR RQD Number / Type Method Casing 10.8 m to 61.0 m: Wash drilling (continued from layer starting Wash drilled GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 4 December 2019 35 **Ground Water Level** Inclination: Vertical Orientation: Notes and Comments: End of Hole @ 61.00m, Target Depth. Contractor: Speight Drilling Date Time

Equipment: Track Mounted Rig

Shear Vane Id:


0.0 - 10.8 m PQTT coring 10.8 - 61.0 m wash drilling

Refer to explanation sheets for abbreviation and symbols

Report ID:

Water level

Reading (mbgl)

GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD GLB || Date: 4 December 2019 Report ID:

0.0 - 10.8 m PQTT coring 10.8 - 61.0 m wash drilling Refer to explanation sheets for abbreviation and symbols

Water level

: BH201 Project : Smooth Hill Landfill Consenting Hole No. Client : Dunedin City Council Sheet : 6 of 7 Site : Southern Boundary Hole Length : 61.00m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 29/10/2019 Completed: 1/11/2019 Logged : MF System: TAIETM2000 Processed : MF Easting: 396596 Northing: 787540 RL: 144 Checked Datum: NZVD2016 : JHS Sample **Geological Unit** Moisture condition 8 Estimated Strength (MPa) Consistancy / Relative density Flush Return **Material Description** Weathering Depth (m) TCR SCR RQD Number / Method Casing 10.8 m to 61.0 m: Wash drilling (continued from layer starting Wash drilled Project: 12506381 GINT LOGS SMOOTH HILL.GPJ | Library: GHD - NZGD.GLB | Date: 4 December 2019 55 Inclination: Vertical Orientation: Notes and Comments:

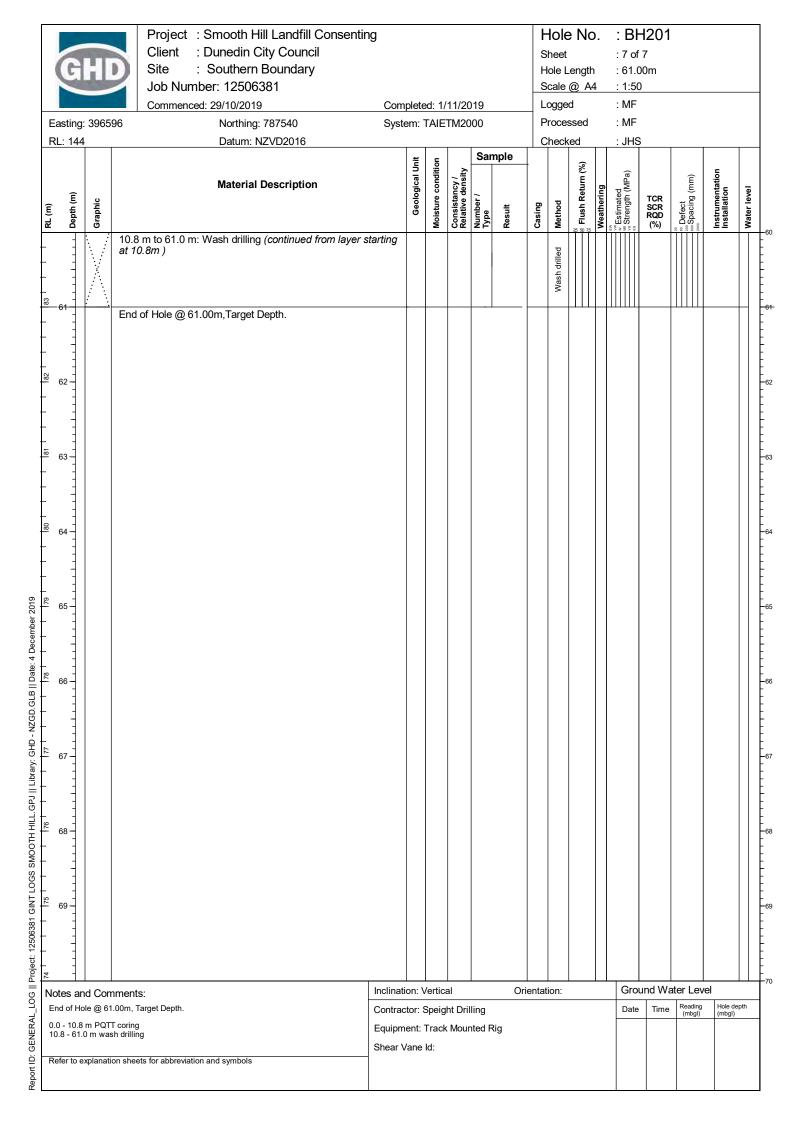
GENERAL_LOG ≘

Report I

End of Hole @ 61.00m, Target Depth. 0.0 - 10.8 m PQTT coring 10.8 - 61.0 m wash drilling

Refer to explanation sheets for abbreviation and symbols

Ground Water Level


Contractor: Speight Drilling

Shear Vane Id:

Equipment: Track Mounted Rig

Reading (mbgl) Date Time

Water level

Project	Waste Futures WS3 – Smooth Hill	Commenced	28/10/2019 Completed	01/11/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.8 m	

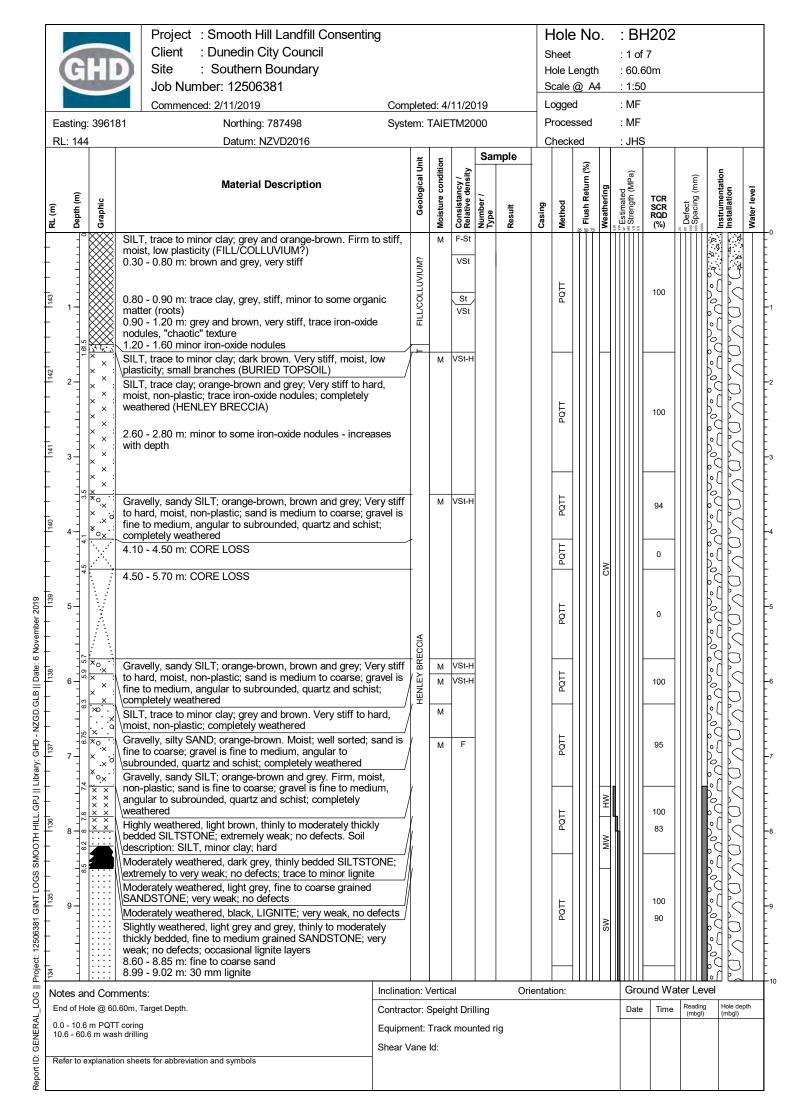
Box 1 of 5: 0.00 m to 2.30 m

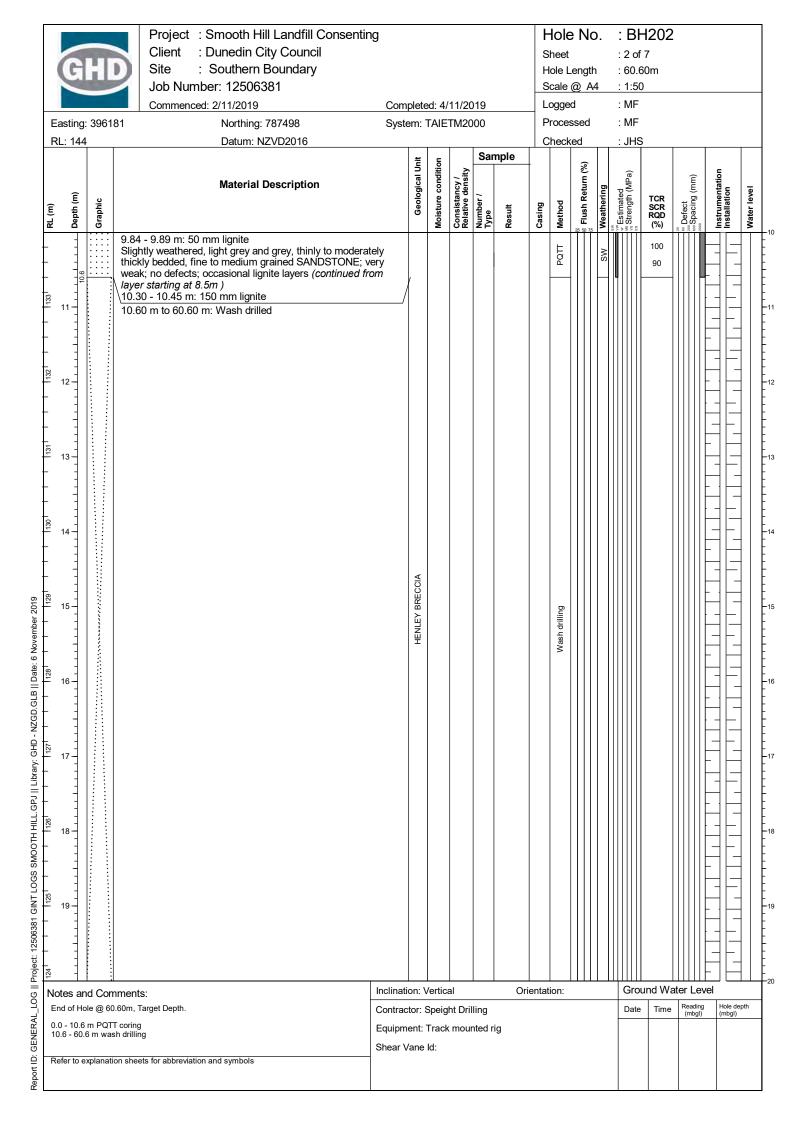
Box 2 of 5: 2.30 m to 4.50 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	28/10/2019 Completed	01/11/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.8 m	

Box 3 of 5: 4.50 m to 6.80 m

Box 4 of 5: 6.80 m to 9.00 m




Project	Waste Futures WS3 – Smooth Hill	Commenced	28/10/2019 Completed	01/11/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.8 m	

Box 5 of 5: 9.00 m to 10.80 m

10.80 m to 61.00 m (EOH) - Wash drilled, no core recovered

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Southern Boundary

Job Number: 12506381

Commenced: 2/11/2019 Completed: 4/11/2019

: BH202 Hole No.

Sheet : 3 of 7 Hole Length : 60.60m Scale @ A4 : 1:50

Logged : MF

Material Description 0.60 m to 60.60 m: Wash drilled (continued from layer tarting at 10.6m)	er .	Geological Unit	Moisture condition	Consistancy / Relative density		Result	Casing	Method	ın (%)	Weathering	Strength (MPa)	TCR SCR RQD (%)		SON
0.60 m to 60.60 m: Wash drilled (continued from layer tarting at 10.6m)	er													<u>^^^^^^^^^^^^^^^</u>
		HENLEY BRECCIA						Wash drilling						
ents: m, Target Depth.	Contrac	tor: S	Speig	ht Drill			entati	on:			+		ater Lev	/O / O / O / el
m		ng Equipm Shear \	ng Equipment: Shear Vane	, Target Depth. Contractor: Speig	Contractor: Speight Dril ng Equipment: Track mount Shear Vane Id:	n, Target Depth. Contractor: Speight Drilling Equipment: Track mounted r Shear Vane Id:	r, Target Depth. Contractor: Speight Drilling Requipment: Track mounted rig	n, Target Depth. Contractor: Speight Drilling Equipment: Track mounted rig Shear Vane ld:	r, Target Depth. Contractor: Speight Drilling Equipment: Track mounted rig	ng Equipment: Track mounted rig Shear Vane Id:	ng Equipment: Track mounted rig Shear Vane Id:	ng Equipment: Track mounted rig	ng Equipment: Track mounted rig Shear Vane Id: Contractor: Speight Drilling Date Time Equipment: Track mounted rig Shear Vane Id:	Contractor: Speight Drilling Equipment: Track mounted rig Shear Vane Id: Date Time Reading (mbgl) Shear Vane Id:

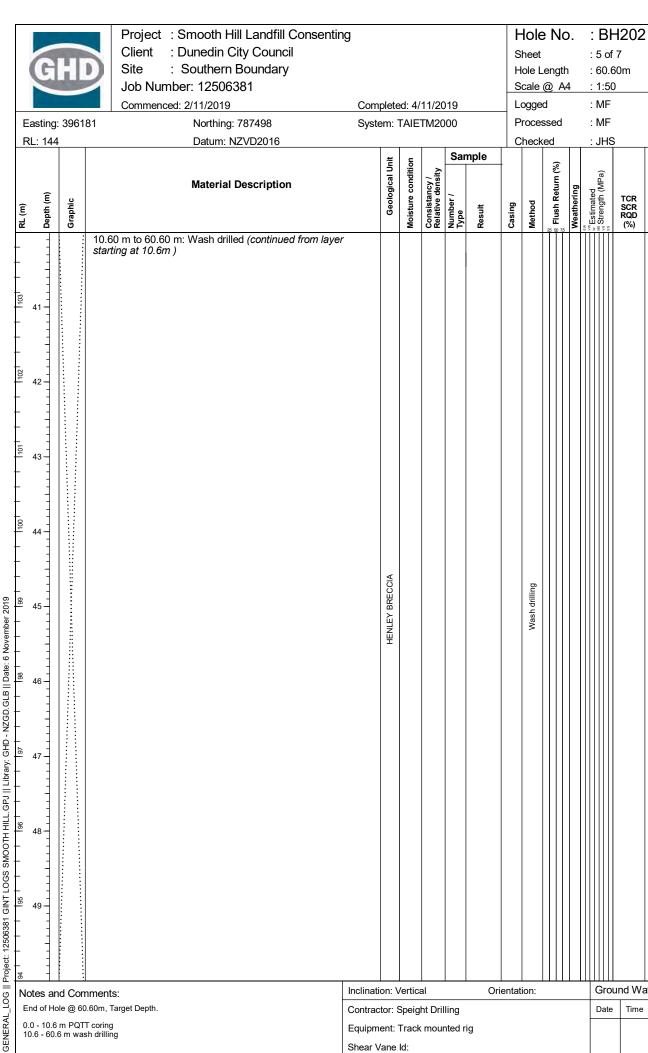
: BH202 Project : Smooth Hill Landfill Consenting Hole No. Client : Dunedin City Council : 4 of 7 Sheet Site : Southern Boundary Hole Length : 60.60m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 2/11/2019 Completed: 4/11/2019 Logged : MF Northing: 787498 System: TAIETM2000 Processed : MF Easting: 396181 RL: 144 Checked Datum: NZVD2016 : JHS Sample **Geological Unit** Moisture condition 8 Estimated Strength (MPa) Consistancy / Relative density Flush Return **Material Description** Weathering Depth (m) TCR SCR RQD Number / Method Casing 10.60 m to 60.60 m: Wash drilled (continued from layer starting at 10.6m) HENLEY BRECCIA Wash drilling GENERAL_LOG || Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 6 November 2019 35 Inclination: Vertical Orientation: Notes and Comments: Contractor: Speight Drilling

End of Hole @ 60.60m, Target Depth.

Report ID:

0.0 - 10.6 m PQTT coring 10.6 - 60.6 m wash drilling

Refer to explanation sheets for abbreviation and symbols


Ground Water Level

Equipment: Track mounted rig

Shear Vane Id:

Reading (mbgl) Date Time

Water level

End of Hole @ 60.60m, Target Depth. 0.0 - 10.6 m PQTT coring 10.6 - 60.6 m wash drilling

Report ID:

Refer to explanation sheets for abbreviation and symbols

Contractor: Speight Drilling

Ground Water Level

Equipment: Track mounted rig

Shear Vane Id:

Reading (mbgl) Date Time

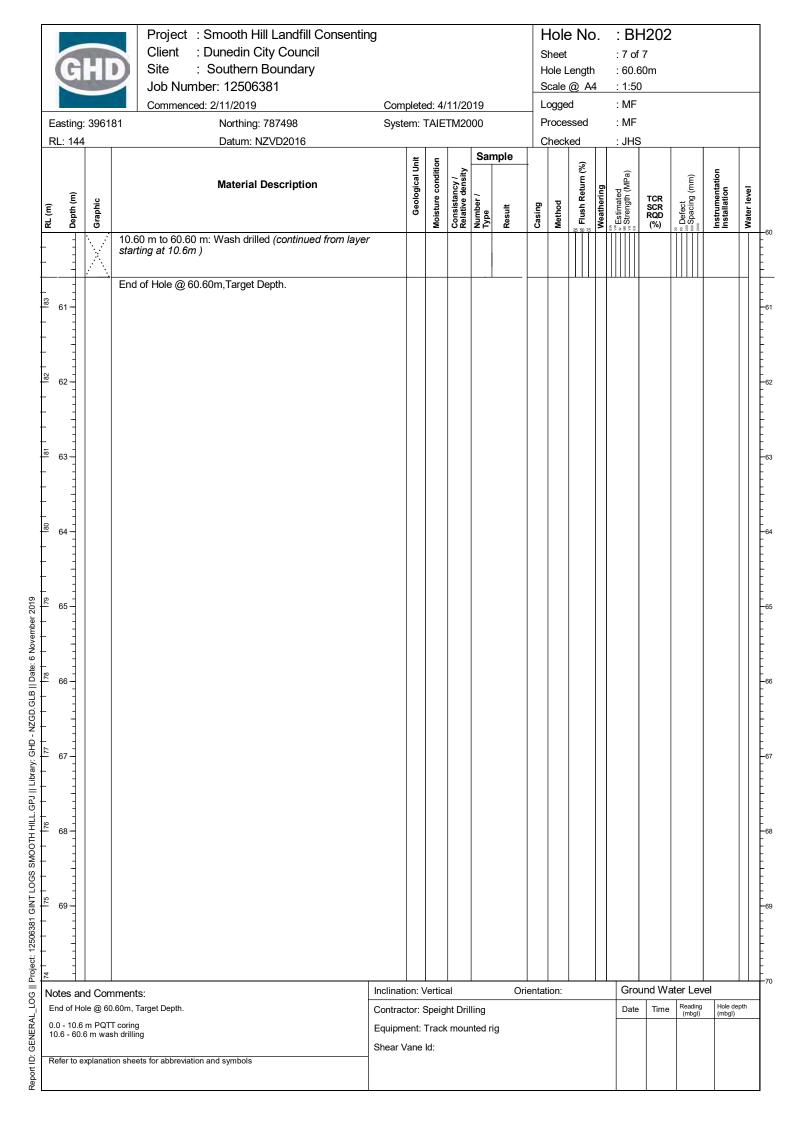
Defect Spacing (mm)

Water level

Project : Smooth Hill Landfill Consenting : BH202 Hole No. Client : Dunedin City Council Sheet : 6 of 7 Site : Southern Boundary Hole Length : 60.60m Job Number: 12506381 Scale @ A4 : 1:50 Commenced: 2/11/2019 Completed: 4/11/2019 Logged : MF Northing: 787498 System: TAIETM2000 Processed : MF Easting: 396181 RL: 144 Checked Datum: NZVD2016 : JHS Sample **Geological Unit** Moisture condition 8 Estimated Strength (MPa) Consistancy / Relative density Flush Return **Material Description** Weathering Depth (m) TCR SCR RQD Number / Method Casing 10.60 m to 60.60 m: Wash drilled (continued from layer starting at 10.6m) HENLEY BRECCIA Wash drilling Project: 12506381 GINT LOGS SMOOTH HILL.GPJ | Library: GHD - NZGD.GLB | Date: 6 November 2019 55 **Ground Water Level**

Water level

Reading (mbgl)


Time

GENERAL_LOG ≘ Report I

Inclination: Vertical Orientation: Notes and Comments: End of Hole @ 60.60m, Target Depth. Contractor: Speight Drilling Date 0.0 - 10.6 m PQTT coring 10.6 - 60.6 m wash drilling Equipment: Track mounted rig

Shear Vane Id:

Refer to explanation sheets for abbreviation and symbols

Project	Waste Futures WS3 – Smooth Hill	Commenced	02/11/2019 Completed	04/11/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.6 m	

Box 1 of 4: 0.00 m to 2.30 m

Box 2 of 4: 2.30 m to 6.10 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	02/11/2019 Completed	04/11/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.6 m	

Box 3 of 4: 6.10 m to 8.30 m

Box 4 of 4: 8.30 m to 10.60 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	02/11/2019 Completed	04/11/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.6 m	

10.60 m to 60.60 m (EOH) - Wash drilled, no core recovered

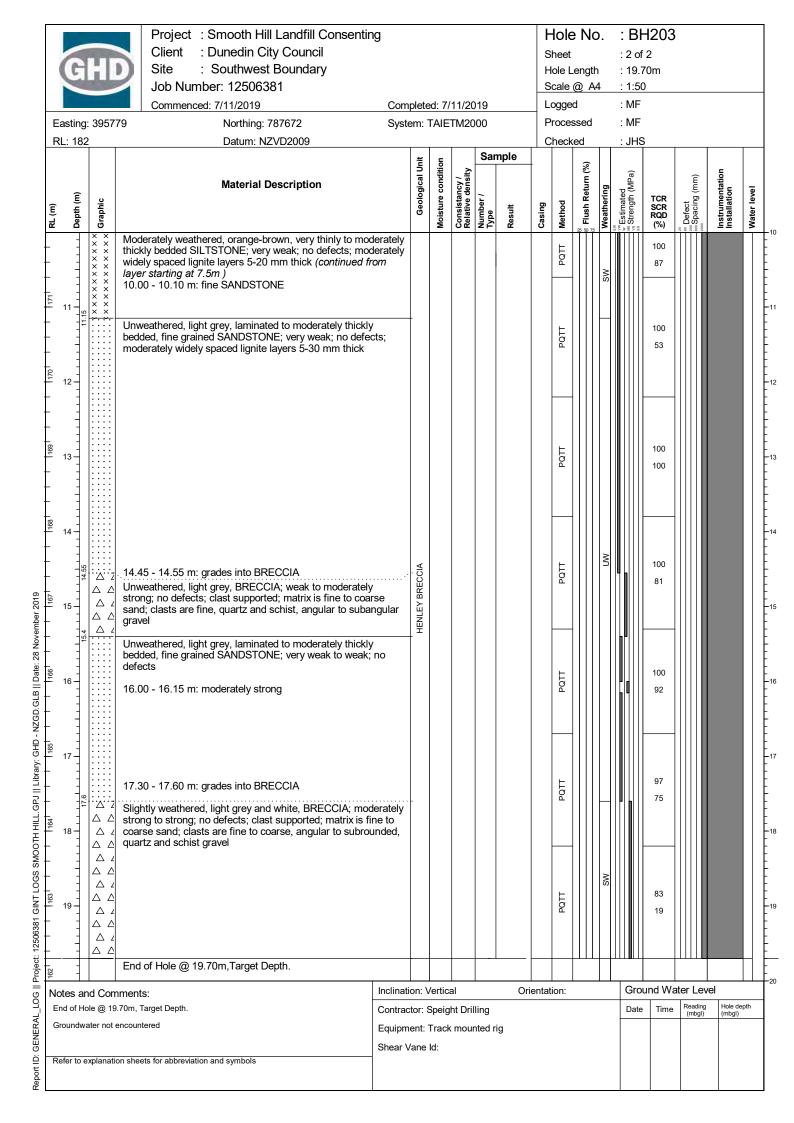
Report ID: GENERAL_LOG | Project: 12506381 GINT LOGS SMOOTH HILL.GPJ | Library: GHD - NZGD.GLB || Date: 28 November 2019

Refer to explanation sheets for abbreviation and symbols

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Southwest Boundary

Job Number: 12506381


Commenced: 7/11/2019 Completed: 7/11/2019

: BH203 Hole No.

Sheet : 1 of 2 : 19.70m Hole Length Scale @ A4 : 1:50

Logged : MF

			Commenced: //11/2019	Com	plete	ed: //	11/20	719		╛┖	ogge	u		: IVIF				
Easting	g: 39	5779	Northing: 787672	Syst	em: ⁻	TAIE	TM20	000		P	roces	ssed		: MF				
RL: 18	2		Datum: NZVD2009							c	heck	ed		: JHS	3			
					ij	E			nple			÷						
RL (m) Depth (m)	Graphic		Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Number / Type	Result	Casing	Method	Flush Return (%)	Weathering	**Estimated **Strength (MPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation	Water level
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000		ighly weathered, cream, orange-brown and yellow-bro ONGLOMERATE; extremely weak; no defects; matrix upported; matrix is fine to coarse sandy silt; clasts are bunded to subrounded, quartz and schist gravel. Soil escription: gravelly sandy silt (TARATU FORMATION) ighly weathered, orange-brown and grey, laminated to noderately thickly bedded SILTSTONE; extremely weak efects. Soil description: Silt, minor fine to medium sand ange-brown is added into: moderately weathered, grey with occasion ange-brown, laminated to moderately thickly bedded, and grained SANDSTONE; extremely weak; no defects, escription: silty fine sand loderately weathered, brown and grey, moderately thickly dedded CONGLOMERATE; very weak to weak; no defect and supported; matrix is fine to coarse sand; clasts and bunded to subangular, quartz and schist gravel	c fine, c; no d, hard onal silty Soil	TARATU FORMATION						PQTT PQTT PQTT	25 50 77	MH WH		96 85 97 76			
1777 - 1776 - 1777 - 177		△ ara 2 ara	loderately weathered, brown and grey, BRECCIA; very o defects; matrix supported; matrix is silty fine sand; cl re fine to medium, angular to subrounded, quartz and sravel (HENLEY BRECCIA) 80 - 6.00 m: CORE LOSS RECCIA (continued from 4.8 m) 10 - 6.40 m: iron staining, orange-brown	asts schist	:Y BRECCIA						РОТТ		MW		98 58 82 28	-		
9 9 11111111111111111111111111111111111	× × × × × × × × × × × × × × × × × × ×	* th w 7.	loderately weathered, orange-brown, very thinly to mod nickly bedded SILTSTONE; very weak; no defects; mod idely spaced lignite layers 5-20 mm thick .90 - 11.15 m: slightly weathered, grey	uerately derately	HENLEY						РОТТ РОТТ		NS MS		100 89 100 87			
Notes a	nd C	Comme	ents:	Inclinat	ion: \	/ertic	al		Or	ientat	ion:			Gro	und Wa	ter Leve	I	
			m, Target Depth.	Contrac	ctor: S	Speig	ht Dri	lling						Date	Time	Reading (mbgl)	Hole dep (mbgl)	th
Groundw				Equipm				_	ia							(mbgl)	(mpgi)	
				' '			· mou	ou I	ਤ									
			Shear Vane Id:															

Project	Waste Futures WS3 – Smooth Hill	Commenced	07/11/2019 Completed	07/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 19.7 m	

0.00 m to 2.30 m

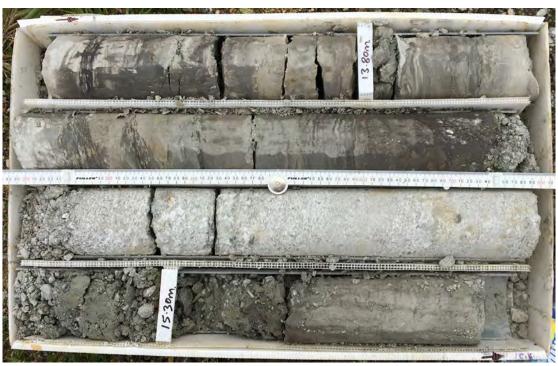
2.30 m to 4.60 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	07/11/2019 Completed	07/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m to 19.7 m	

4.60 m to 6.90 m

6.90 m to 9.20 m

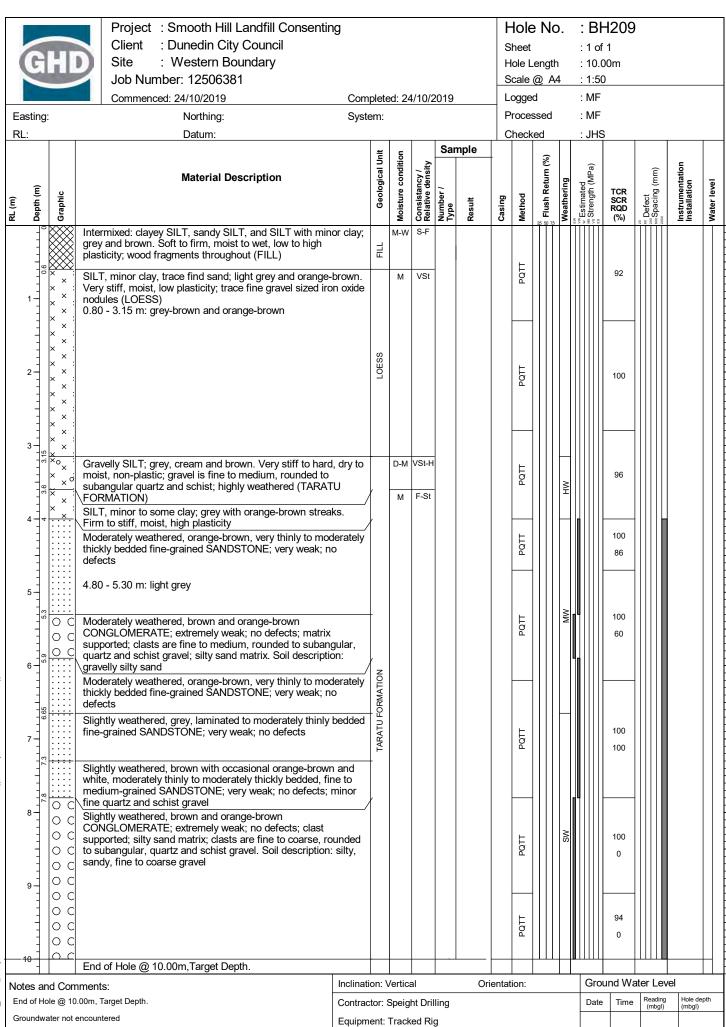
Project	Waste Futures WS3 – Smooth Hill	Commenced	07/11/2019 Completed	07/11/2019		
Site	Smooth Hill	Logged By	MF			
Job#	12506381	Checked By				
Client	Dunedin City Council	Core Depth	0.0 m to 19.7 m			


9.20 m to 11.30 m

11.30 m to 13.40 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	07/11/2019 Completed	07/11/2019	
Site	Smooth Hill	Logged By	MF		
Job#	12506381	Checked By			
Client	Dunedin City Council	Core Depth	0.0 m to 19.7 m		

13.40 m to 15.60 m


15.60 m to 17.90 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	07/11/2019 Completed	07/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m to 19.7 m	

17.90 m to 19.70 m (EOH)

Shear Vane Id:

|| Project: 12506381 GINT LOGS SMOOTH HILL.GPJ || Library: GHD - NZGD.GLB || Date: 30 October 2019

GENERAL LOG ≘ Report I

Refer to explanation sheets for abbreviation and symbols

Project	Waste Futures WS3 – Smooth Hill	Commenced	24/10/2019 Completed	24/10/2019
Site	Western Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.0 m	

Box 1 of 5: 0.00 m to 2.40 m

Box 2 of 5: 2.40 m to 4.70 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	24/10/2019 Completed	24/10/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.0 m	

Box 3 of 5: 4.70 m to 7.15 m

Box 4 of 5: 7.15 m to 9.20 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	24/10/2019 Completed	24/10/2019
Site	Southern Boundary	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m – 10.0 m	

Box 5 of 5: 9.20 m to 10.0 m (EOH)

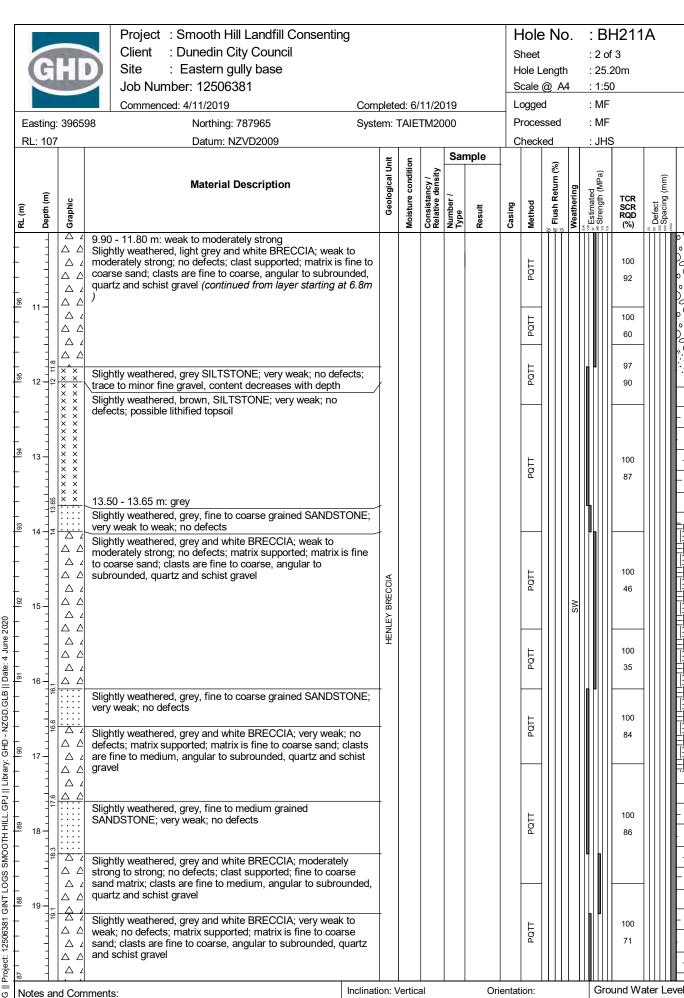
Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Eastern gully base

Job Number: 12506381

Commenced: 4/11/2019 Completed: 6/11/2019

Sheet : 1 of 3


: BH211A

: 25.20m Hole Length Scale @ A4 : 1:50

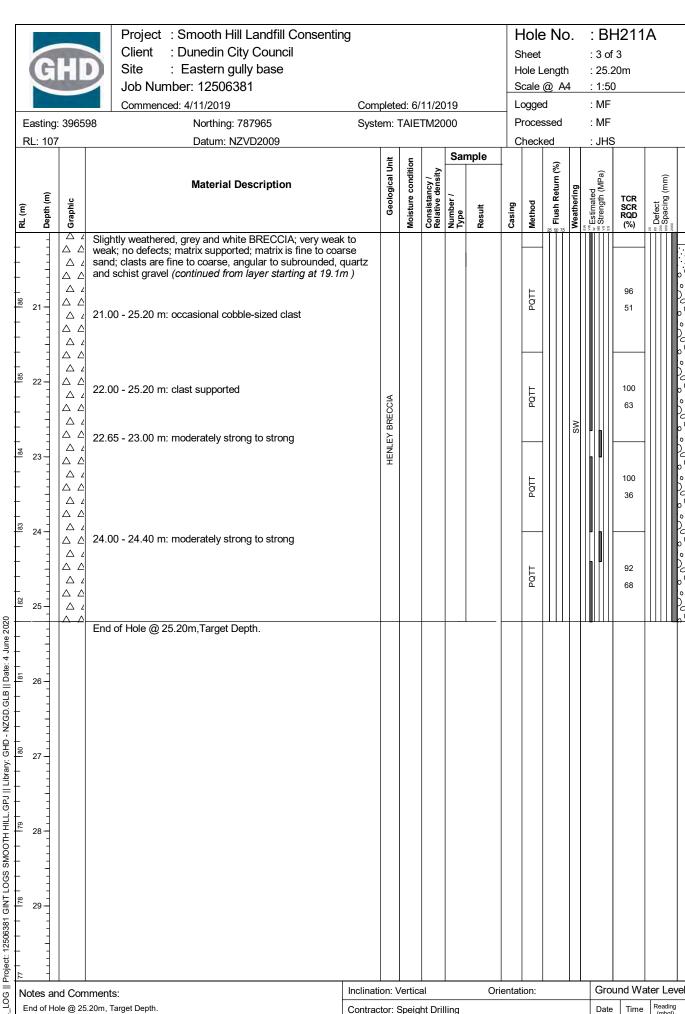
Logged : MF

Hole No.

RL:	Ŭ	3965	98 Northing: 787965 Datum: NZVD2009	Syste							roces heck			: MF : JH			
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density		Result	Casing	Method	Flush Return (%)	Weathering	" "Estimated "Strength (MPa)	TCR SCR RQD (%)	。 。 。 Spacing (mm)	Instrumentation Installation
Ľ	<u>-</u> 1°	··	0.00 - 0.35 m: CORE LOSS (inferred at top of run)			2	OR	ZF	<u> </u>	0	2	25 50 75	, >	3 3 2 3 3	(70)	20 60 200 600 600 2000	P A
- - -	0.35		SILT, minor fine to medium sand, trace clay; grey, orange-brown and dark grey intermixed. Stiff to very stil moist, low plasticity (FILL)	 ff,			St-VS	t			F						
- 1 -		× × ; × × ; × × ; × × ;	SILT, trace to minor fine to medium sand; grey and orange-brown. Very stiff, moist, low plasticity; trace to n iron-oxide nodules (LOESS)	minor	LOESS	М	VSt				PQTT				78		
	951.8 1.6	×	1.60 - 1.80 m: CORE LOSS (inferred depth) SILT (continued from 0.7 m)								E						
- 2	!	× ··· × ··· × ··· × ···	Sandy SILT, minor fine gravel; orange-brown and grey. stiff to hard, moist, non-plastic; sand is fine to medium; is angular to rounded quartz and schist; completely weather to the complete of the state of the complete or state	gravel		М	VSt-H	-			PQTT				75		
= 3	3.2	× × × × × × × × × × × × × × × × × × ×	2.40 - 2.80 m: firm to stiff 2.80 - 3.20 m: very stiff 3.20 - 3.70 m: CORE LOSS				VSt				РОТТ				62		
	3.7	× × ×	SILT; dark grey. Firm to stiff, moist, low plasticity; comp weathered siltstone	 oletely	 	M F-S	M F-St	_					CW				
	4.6 4.2	×	Gravelly SAND; grey. Moist; sand is fine to coarse; graveline, angular to subrounded, quartz and schist; complet weathered breccia 4.60 - 5.20 m: CORE LOSS	vel is ely	_	М	VSt-H	1			PQTT				100		
70L 5	5.2	0 1	Gravelly SAND (continued from 4.2 m)		_	М	VSt-H								59		
- - - - 6	5.4		Highly weathered, orange-brown and grey, moderately to bedded BRECCIA; extremely weak; no defects; matrix supported; matrix is fine to coarse sand; clasts are fine medium, angular to rounded, quartz and schist gravel. Su	to	Y BRECCIA	IVI	VSI-I				PQTT		MH		25		
	6.75	× × × × × × × × × ×	Slightly weathered, light grey and white, moderately thic bedded SILTSTONE; very weak to weak; no defects Slightly weathered, light grey and white BRECCIA; wea		HENLEY												
- 7 - - -			moderately strong; no defects; clast supported; matrix is coarse sand; clasts are fine to coarse, angular to subro quartz and schist gravel	s fine to							PQTT				93		
- 8 											PQTT		SW		100		
- 86 g -			8.80 - 9.90 m: very weak to weak								PQTT				100 79		
. /6				T													
			nments:	Inclinati					Oı	rientat	ion:				ound W	T	
		_	.20m, Target Depth. .81 m bgl in shallow piezo (25/11/19)	Equipm Shear V	ent:	Track		·	rig					Dat	te Time	Reading (mbgl)	Hole depth (mbgl)
Refe	r to e	xplanati	on sheets for abbreviation and symbols														

Spacing (mm)

Time


eve

Water

| Project: 50 ≘ Report I

Refer to explanation sheets for abbreviation and symbols

End of Hole @ 25.20m, Target Depth. Contractor: Speight Drilling Date Groundwater at 2.81 m bgl in shallow piezo (25/11/19) Equipment: Track mounted rig Shear Vane Id:

12506381 GINT LOGS SMOOTH HILL.GPJ || Library: || Project: GENERAL_LOG ≘ Report I

Groundwater at 2.81 m bgl in shallow piezo (25/11/19)

Refer to explanation sheets for abbreviation and symbols

Contractor: Speight Drilling Equipment: Track mounted rig Reading (mbgl)

Water level

0

Shear Vane Id:

Project : Smooth Hill Landfill Consenting

Client : Dunedin City Council Site : Eastern gully base

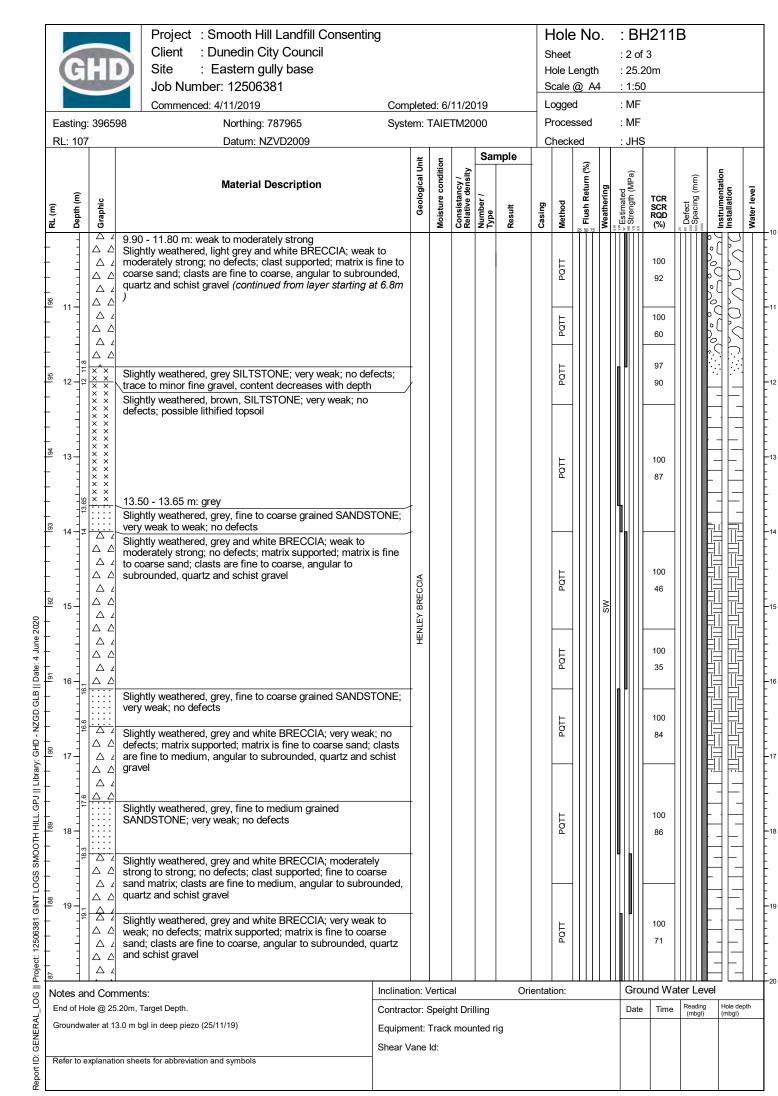
Job Number: 12506381

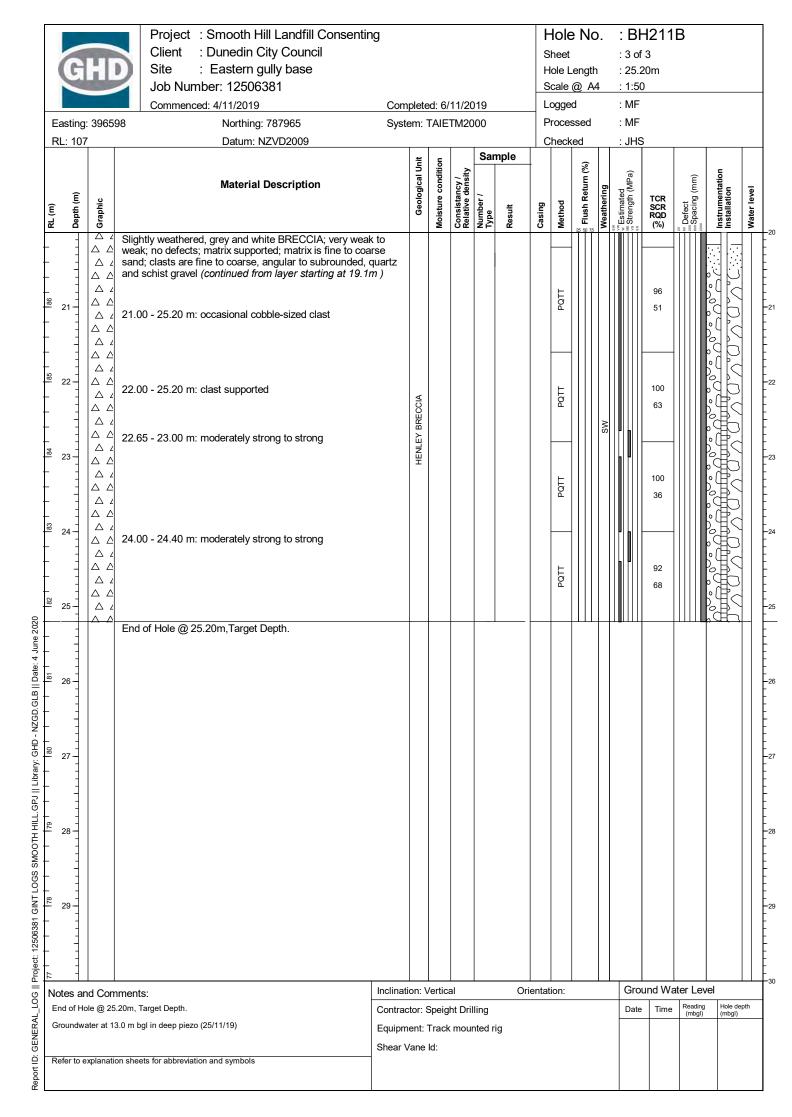
: BH211B

: 1 of 3

: 1:50

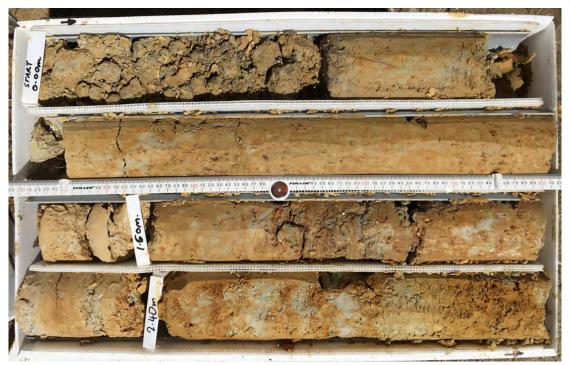
: 25.20m


Hole No.


Hole Length

Scale @ A4

Sheet


RL	: 107	,	Datum: NZVD2009	Т	- 1			_		<u> </u>	heck	ed		: JH	S			_			
RL (m)	Depth (m)	Graphic	Material Description		Geological Unit	Moisture condition	Consistancy / Relative density	Number / Type	Result	Casing	Method	Flush Return (%)	Weathering	" "Estimated "strength (MPa)	TCR SCR RQD (%)	Defect Spacing (mm)	Instrumentation Installation	Water lovel			
	-0		0.00 - 0.35 m: CORE LOSS (inferred at top of run)									25 50 75		W> 5 2 > U		56565	P				
- -	0.7 0.35		SILT, minor fine to medium sand, trace clay; grey, orange-brown and dark grey intermixed. Stiff to very stimulate, moist, low plasticity (FILL)	 ff,			St-VSt VSt				Ц				70						
100	1-	× × ; × × ; × × ;	SILT, trace to minor fine to medium sand; grey and orange-brown. Very stiff, moist, low plasticity; trace to r iron-oxide nodules (LOESS)	minor	LOESS	М	VSI				PQTT				78						
105	951.8 1.6	×	1.60 - 1.80 m: CORE LOSS (inferred depth) SILT (continued from 0.7 m)								_										
- - -	2	× · · · · · · · · · · · · · · · · · · ·	Sandy SILT, minor fine gravel; orange-brown and grey. stiff to hard, moist, non-plastic; sand is fine to medium; is angular to rounded quartz and schist; completely weat breccia (HENLEY BRECCIA)	gravel		М	VSt-H F-St				PQTT				75						
104	3-1-8	× · · · · · · · · · · · · · · · · · · ·	2.40 - 2.80 m: firm to stiff 2.80 - 3.20 m: very stiff		-	VSt	VSt				PQTT				62						
- -	3.7	× -	3.20 - 3.70 m: CORE LOSS SILT; dark grey. Firm to stiff, moist, low plasticity; comp			М	F-St						CW								
- 103	4 = 2.4	× × ;	weathered siltstone Gravelly SAND; grey. Moist; sand is fine to coarse; grav				VSt-H				PQTT				100						
102 1	4.6		fine, angular to subrounded, quartz and schist; complet weathered breccia 4.60 - 5.20 m: CORE LOSS	tely		IVI	VOCTI														
-	4 5.2	0 1	Gravelly SAND (continued from 4.2 m)			М	VSt-H				III				59						
101	6		Highly weathered, orange-brown and grey, moderately bedded BRECCIA; extremely weak; no defects; matrix supported; matrix is fine to coarse sand; clasts are fine medium, angular to rounded, quartz and schist gravel. Secription: gravelly sa	to	Y BRECCIA						PQTT		HW		25			-			
- -	75	× × × × × × × ×	Slightly weathered, light grey and white, moderately this bedded SILTSTONE; very weak to weak; no defects	ckly	HENLEY																
100	7-		Slightly weathered, light grey and white BRECCIA; weat moderately strong; no defects; clast supported; matrix is coarse sand; clasts are fine to coarse, angular to subroquartz and schist gravel	s fine to							PQTT				100 93			- - - -			
- 66 -	8 -													PQTT		SW		100 70			
- 86	9 -		8.80 - 9.90 m: very weak to weak								PQTT				100 79						
97	-			1.																	
			ments: 20m, Target Depth.	Inclination				ling	Or	rientat	on:			Gro	ound Wa	Reading	Hole de	epth			
		_	.0 m bgl in deep piezo (25/11/19)	Equipme		Ŭ		•	rig					Dal	Illile	(mbgl)	(mbgl)				
				Shear Va					-												

Project	Waste Futures WS3 – Smooth Hill	Commenced	04/11/2019 Completed	06/11/2019		
Site	Smooth Hill	Logged By	MF			
Job#	12506381	Checked By				
Client	Dunedin City Council	Core Depth	0.0 m – 25.2 m			

 $0.00\ m$ to $2.80\ m$

2.80 m to 6.20 m

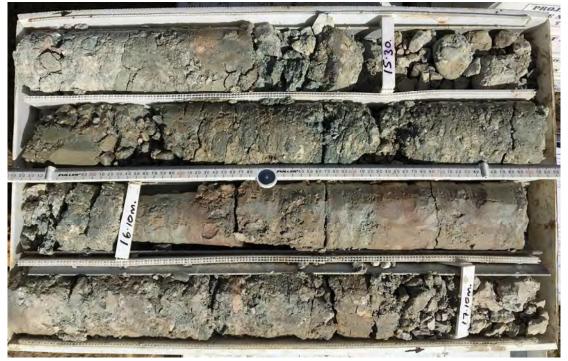
Project	Waste Futures WS3 – Smooth Hill	Commenced	04/11/2019 Completed	06/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m to 25.2 m	

6.20 m to 8.50 m

8.50 m to 10.70 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	04/11/2019 Completed	06/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m to 25.2 m	

10.70 m to 12.80 m


12.80 m to 14.90 m

Report of Photographs

Site Identification: BH211

Project	Waste Futures WS3 – Smooth Hill	Commenced	04/11/2019 Completed	06/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m to 25.2 m	

14.90 m to 17.20 m

17.20 m to 19.50 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	04/11/2019 Completed	06/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m to 25.2 m	

19.50 m to 21.70 m

21.70 m to 23.90 m

Project	Waste Futures WS3 – Smooth Hill	Commenced	04/11/2019 Completed	06/11/2019
Site	Smooth Hill	Logged By	MF	
Job#	12506381	Checked By		
Client	Dunedin City Council	Core Depth	0.0 m to 25.2 m	

23.90 m to 25.20 m (EOH)

Appendix C – Laboratory Testing Results

Page 1 of 6 Pages

Reference No: 19/1963

Date: 23 July 2019

TEST REPORT: DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch		Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations			
Sample Description:	Loess – SILT with some sand, minor gravel and minor clay	Client	t Job No:	12506381
Sample Source:	TP10/01	Samp	le Depth:	2.2m to 3.6m
Date & Time Sampled:	10-Jun-19	Samp	led By:	M. Fitzmaurice
Sample Method:	Test Pit / Borehole *	Date 1	Received:	26-Jun-19

	IZE ANALYSIS				200	0.075	0.212	0.60	2.36	9.50 13.2 19.0	37.5	63.0 75.0 106 150	007
Test Sieve	Test 2.8.1 & 2.8.4) % Passing	100							0				
(mm)	(by mass)	90	0			-	•	•				441111	
37.5	100											TP	10/01
26.5	98	80	0		1			-					10,01
19.0	98				1								
13.2	98	70	0		4								
9.50	98												
4.75	97	ssu 60	0 + + +	+++++	•			-	++++				
2.36	95	by n											
2.00	94	% Passing (by mass)	0	1 1			1111	-					
1.18	92	ıssi											
0.60	91	3d 9	0					1111					
0.30	91			111/							160		
0.212	90	30	0	1									
0.150	89	20											
0.075	84												
0.063	82	10											
Fraction	Interpolated %	1											
Size	Passing												
60 μm	81		0.001	0.01		0.1		1		10		100	1000
20 μm	55		CLAY Fine	SILT	Coarse	Fine	Medium	Coarse	Fine	Medium GRAVEL	Coarse	COBBLES	BOULDERS
6 μm	23		The sample we	as received in	a natur	al state. T	The perce	ntage pas	sing the 6	3µm test sie	eve wa	s obtained i	by difference.
2 μm	9		The pH of the	hydrometer s	uspensi	on was 9.	5. Sodiui	n hexame	etaphosph	ate was use	d as a	dispersant.	
	TICLE SIZE ANAL	YSIS &	& HYDRON	METER AN	IALYS	SIS RE	SULTS	- NZS	4402:19	86, Test	2.8.1	& 2.8.4	
Description	Fraction Rai			in Range		Descri				n Range			nin Range
Coarse Gravel	60.0mm to 20.	0mm		2		Fine S	Sand		200 μm	to 60 µm			9
N/ 11 C	200 4 60					-	Cit						2.0

PARTIC	PARTICLE SIZE ANALYSIS & HYDROMETER ANALYSIS RESULTS - NZS 4402:1986, Test 2.8.1 & 2.8.4											
Description	Fraction Range	% Within Range	Description	Fraction Range	% Within Range							
Coarse Gravel	60.0mm to 20.0mm	2	Fine Sand	200 μm to 60 μm	9							
Medium Gravel	20.0mm to 6.0mm	1	Coarse Silt	60 μm to 20 μm	26							
Fine Gravel	6.0mm to 2.00 mm	3	Medium Silt	20 μm to 6 μm	32							
Coarse Sand	2.00mm to 600 μm	3	Fine Silt	6 μm to 2 μm	14							
Medium Sand	600 μm to 200 μm	1	Clay	< 2 μm	9							

WATER CONTENT & PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.1, 2.2, 2.3 & 2.4							
Water Content: ("All In" As Received) 15.5 %							
Liquid Limit: (LL) 39							
Plastic Limit: (PL)	28						
Plasticity Index: (PI)	11						
Note: The sample was received in a natural state. The pla	sticity index material tested was the fraction passing the 425 µm test sieve.						

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

Tested By: L.T. Smith

emples Checked By:

Date: 4 to 15-Jul-19

Page 2 of 6 Pages

Reference No: 19/1963

Date: 23 July 2019

TEST REPORT: DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch	Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations		
Sample Description:	Loess – SILT with some sand, minor gravel and minor clay	Client Job No:	12506381
Sample Source:	TP10/01	Sample Depth:	2.2m to 3.6m
Date & Time Sampled:	10-Jun-19	Sampled By:	M. Fitzmaurice
Sample Method:	Test Pit / Borehole *	Date Received:	26-Jun-19

% Retained					10	0%		5%		09	6 Air V	oids Lin	
(+19.0mm Fraction) 2.0 %	1.72							1		Î			
Water Content: ("All In" As Received) 15.5 %	1.71						ō	1					H
Maximum Dry Density: (-19.0mm Fraction) 1.71 t/m ³	1.70			100	100			1					L
Optimum Water Content: (-19.0mm Fraction) 16.0 %	t/m³)								1				
otes:	Density (t/m³) 89'1	C	,						1				
The sample was received in a natural state.	Dry Der								i	4			
 The material tested in the NZ Standard Compaction test was the fraction passing a 19.0mm test sieve. 	1.67									1			
• The air voids lines were calculated from an assumed solid density of 2.70 t/m³.	1.66					Ħ				6			
	1.65									j <u>j</u>		1	
	1.64								21				

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

4 to 15-Jul-19 Tested By: L.T. Smith Date:

Checked By:

Page 3 of 6 Pages

Reference No: 19/1963

Date: 23 July 2019

TEST REPORT: DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch		Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations			
Sample Description:	Loess – SILT with some sand, minor gravel and minor clay	Clien	t Job No:	12506381
Sample Source:	TP10/01	Samp	ole Depth:	2.2m to 3.6m
Date & Time Sampled:	10-Jun-19	Samp	oled By:	M. Fitzmaurice
Sample Method:	Test Pit / Borehole *	Date	Received:	26-Jun-19

Head	Elapsed Time	Flow Rate	Colour of Outflow			
(mm)	(min)	(ml/s)	(Cloudiness)			
50	1	0.25	Slightly Dark			
50	5	0.27	Moderately Dark			
50	10	0.31	Dark			
Diameter of Hole	at Start of Test:		1.0mm			
Diameter of Hole	at End of Test:		≈ 2.0mm (4.0mm at exit)			
Water Content P	rior to Test:		16.2 %			
Dry Density of Sa	imple Tested:		1.63 t/m ³			
Pinhole Dispersion Classification – Method B: Dispersive (D)						

CR	CRUMB TEST: ASTM D6572-13e2 (Method B)									
Elapsed Time	Estimated Slaking	Observations Recorded								
2 min	≈ 50 %	No colloidal cloud								
1 hr	≈ 100%	Dense colloidal cloud over								
6 hr	≈ 100 %	Moderate colloidal cloud over								
Crumb Test Classificatio	n:	Grade 4 (Highly Dispersive)								

Note:

- Distilled water was used in the pinhole dispersion and crumb test. Both tests were carried out on remoulded samples.
- The pinhole dispersion sample was compacted to 95% NZ standard compaction.
- Photograph at completion of the crumb test.
- The sample tested was the fraction passing the 2.00mm sieve.

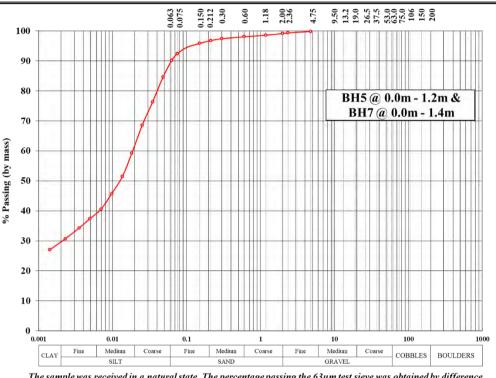
Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

L.T. Smith 4 to 15-Jul-19 Tested By: Date:

empleo Checked By:

Page 4 of 6 Pages


Reference No: 19/1963

Date: 23 July 2019

TEST REPORT: DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch		Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations			
Sample Description:	Loess - Silty CLAY with minor sand and trace of gravel	Client	Job No:	12506381
Sample Source:	BH5 @ 0.0m to 1.2m & BH7 @ 0.0m to 1.4m	Sampl	e Depth:	Combined (0.0m to 1.4m)
Date & Time Sampled:	21-Jun-19	Sampl	ed By:	M. Fitzmaurice
Sample Method:	Test Pit / Borehole *	Date F	Received:	26-Jun-19

	IZE ANALYSIS	
(NZS 4402:1986,	Test 2.8.1 & 2.8.4)	
Test Sieve	% Passing	
(mm)	(by mass)	
37.5		
26.5		
19.0		
13.2		
9.50		_
4.75	100	Jass
2.36	99	% Passing (by mass)
2.00	99	1 <u>9</u> (1
1.18	99	ıssir
0.60	98	% P2
0.30	97	0
0.212	97	
0.150	96	
0.075	92	
0.063	90	
Fraction	Interpolated %	
Size	Passing	
60 μm	89	
20 μm	62	
6 μm	39	
2 μm	29	
DAD	TICLE CIZE ANALY	70

The sample was received in a natural state. The percentage passing the 63µm test sieve was obtained by difference. The pH of the hydrometer suspension was 8.5. Sodium hexametaphosphate was used as a dispersant.

PARTIC	PARTICLE SIZE ANALYSIS & HYDROMETER ANALYSIS RESULTS - NZS 4402:1986, Test 2.8.1 & 2.8.4							
Description	Fraction Range	% Within Range	Description	Fraction Range	% Within Range			
Coarse Gravel	60.0mm to 20.0mm	-	Fine Sand	200 μm to 60 μm	8			
Medium Gravel	20.0mm to 6.0mm	-	Coarse Silt	60 μm to 20 μm	27			
Fine Gravel	6.0mm to 2.00 mm	1	Medium Silt	20 μm to 6 μm	23			
Coarse Sand	2.00mm to 600 μm	1	Fine Silt	6 μm to 2 μm	10			
Medium Sand	600 μm to 200 μm	1	Clay	< 2 μm	29			

WATER CONTENT & PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.1, 2.2, 2.3 & 2.4					
Water Content: ("All In" As Received) 23.6 %					
Liquid Limit: (LL)	42				
Plastic Limit: (PL)	23				
Plasticity Index: (PI) 19					
Note: The sample was received in a natural state. The plasticity index material tested was the fraction passing the 425 µm test sieve.					

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

Tested By: L.T. Smith

emples Checked By:

Date: 4 to 15-Jul-19

Page 5 of 6 Pages

Reference No: 19/1963

Date: 23 July 2019

TEST REPORT: DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch		Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations			
Sample Description:	Loess - Silty CLAY with minor sand and trace of gravel	Client Jo	ob No:	12506381
Sample Source:	BH5 @ 0.0m to 1.2m & BH7 @ 0.0m to 1.4m	Sample I	Depth:	Combined (0.0m to 1.4m)
Date & Time Sampled:	21-Jun-19	Sampled	By:	M. Fitzmaurice
Sample Method:	Test Pit / Borehole *	Date Rec	eived:	26-Jun-19

0/ 7 / 1					10%			5%			0% Air	· Voids I	ine		
% Retained (+19.0mm Fraction) 0.0 %	1.7							1							
Water Content: ("All In" As Received) 23.6 %	1.7							- \							
Maximum Dry Density: (-19.0mm Fraction) 1.70 t/m ³	1.6	9			9				1	`					
Optimum Water Content: (-19.0mm Fraction) 17.5 %	Density (t/m³)			1					1	o'l					
 The sample was received in a natural state. The material tested in the NZ Standard Compaction test was the fraction passing a 19.0mm test sieve. The air voids lines were calculated from an assumed solid density of 2.70 t/m³. 	1.6 1.6 1.6	3	13	/	5 1	6 1	7	8	9 2	0 2		222	23 2	4 255	

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

Tested By: L.T. Smith 4 to 15-Jul-19 Date:

empleo Checked By:

Page 6 of 6 Pages

Reference No: 19/1963

Date: 23 July 2019

TEST REPORT: DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch	Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations		
Sample Description:	Loess - Silty CLAY with minor sand and trace of gravel	Client Job No:	12506381
Sample Source:	BH5 @ 0.0m to 1.2m & BH7 @ 0.0m to 1.4m	Sample Depth:	Combined (0.0m to 1.4m)
Date & Time Sampled:	21-Jun-19	Sampled By:	M. Fitzmaurice
Sample Method:	Test Pit / Borehole *	Date Received:	26-Jun-19

	PINHOLE DISPERSION TEST: ASTM D4647-13e1						
Head	Elapsed Time	Flow Rate	Col	lour of Outflow			
(mm)	(min)	(ml/s)	(Cloudiness)				
50	1	0.25	В	Barely Visible			
50	5	0.27	Mo	oderately Dark			
50	10	0.49		Very Dark			
Diameter of Hole a	t Start of Test:			1.0mm			
Diameter of Hole a	t End of Test:			≈ 2.0mm			
Water Content Pri	or to Test:			17.8 %			
Dry Density of San	nple Tested:		1.62 t/m³				
Pinhole Dispersion Classification – Method A: CRUMB TEST: ASTM D6572-13e2 (Dispersive (D)			
Elapsed Time	Es	stimated Slaking	Observations Recorded	0 400 mL			
2 min	2	≈ 20 %	No colloidal cloud	bserv 300			
1 hr	÷	≈ 100%	Dense colloidal cloud over	100			
6 hr ≈ 100 % Crumb Test Classification:		Dense colloidal cloud over	200 — 200				
		Grade 4 (Highly Dispersive)	300 — 100				

Note:

- Distilled water was used in the pinhole dispersion and crumb test. Both tests were carried out on remoulded samples.
- The pinhole dispersion sample was compacted to 95% NZ standard compaction.
- Photograph at completion of the crumb test.
- The sample tested was the fraction passing the 2.00mm sieve.

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

L.T. Smith Tested By:

4 to 15-Jul-19 Date:

Checked By:

emples

Approved Signatory

A.P. Julius **Laboratory Manager**

Page 1 of 4 Pages

Reference No: 19/1963-1

Date: 3 August 2019

<u>TEST REPORT – SMOOTH HILL LANDFILL INVESTIG</u>ATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch	Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations		
Sample Description:	Loess – SILT with some sand, minor gravel and minor clay	Client Job No:	12506381
Sample Source:	TP10/01	Sample Depth:	2.2m to 3.6m
Date & Time Sampled:	10-Jun-19	Sampled By:	M. Fitzmaurice
Sample Method:	Test Pit	Date Received:	26-Jun-19

CONSTANT HEAD PERMEABILITY TEST IN A TRIAXIAL CELL – ASTM D5084-16a							
Cell Pressure: (kPa)	610	Compaction:		95% NZ Standard			
Saturation Back Pressure: (kPa)	600	Solid Density: (t/n	n ³)	2.67			
Effective Confining Pressure: (kPa)	10	Temperature Du	ring Test: (°C)	20.5			
Saturation by Pore Pressure Response: (B Value)	0.98	Permeant Liquid	Used:	De-aired Tap Water			
Sample Status:	Initial		Final				
Sample Dimensions: (mm)	105.02 ¢ x 11	15.29	106.02 φ x 117.05				
Bulk Density: (t/m³)	1,92		1.98				
Water Content: (%)	18.0		26.3				
Dry Density: (t/m³)	1.62		1.57				
Saturation By Calculation: (%)	75			100			
Void Ratio: (e)	0.65		0.70				
Constant Head: (kPa)	3.0		5.0				
Hydraulic Conductivity: (k ₂₀)	2.9 x 10 ⁻⁸ n	n/s	í	3.2 x 10 ⁻⁸ m/s			

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005 and sampling.
- This report may not be reproduced except in full.

Tested By: N.P. Danischewski Date: 11-Jul-19 to 3-Aug-19

Checked By: emples

Page 2 of 4 Pages

Reference No: 19/1963-1

Date: 3 August 2019

<u>TEST REPORT – SMOOTH HILL LANDFILL INVESTIG</u>ATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch	Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations		
Sample Description:	Loess – SILT with some sand, minor gravel and minor clay	Client Job No:	12506381
Sample Source:	TP10/01	Sample Depth:	2.2m to 3.6m
Date & Time Sampled:	10-Jun-19	Sampled By:	M. Fitzmaurice
Sample Method:	Test Pit	Date Received:	26-Jun-19

CONSTANT HEAD PERMEABILITY TEST IN A TRIAXIAL CELL – ASTM D5084-16a							
Cell Pressure: (kPa)	727	Compaction:		95% NZ Standard			
Saturation Back Pressure: (kPa)	650	Solid Density: (t/n	m ³)	2.67			
Effective Confining Pressure: (kPa)	77	Temperature Du	ring Test: (°C)	18.0			
Saturation by Pore Pressure Response: (B Value)	0.99	Permeant Liquid	Used:	De-aired Tap Water			
Sample Status:	Initial			Final			
Sample Dimensions: (mm)	105.04 ф x 115.72		105.27 ¢ x 116.26				
Bulk Density: (t/m³)	1.89		1.99				
Water Content: (%)	17.8		24.0				
Dry Density: (t/m³)	1.60			1.61			
Saturation By Calculation: (%)	71			97			
Void Ratio: (e)	0.67			0.66			
Constant Head: (kPa)	3.0		10.0				
Hydraulic Conductivity: (k ₂₀)	2.7 x 10 ⁻⁸ r	n/s		2.8 x 10 ⁻⁸ m/s			

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005 and sampling.
- This report may not be reproduced except in full.

Tested By: N.P. Danischewski Date: 11-Jul-19 to 3-Aug-19

Checked By: emples

Page 3 of 4 Pages

Reference No: 19/1963-1

Date: 3 August 2019

<u>TEST REPORT – SMOOTH HILL LANDFILL INVESTIG</u>ATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch	Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations		
Sample Description:	Loess - Silty CLAY with minor sand and trace of gravel	Client Job No:	12506381
Sample Source:	BH5 @ 0.0m to 1.2m & BH7 @ 0.0m to 1.4m	Sample Depth:	Combined (0.0m to 1.4m)
Date & Time Sampled:	21-Jun-19	Sampled By:	M. Fitzmaurice
Sample Method:	Borehole	Date Received:	26-Jun-19

CONSTANT HEAD PERMEABILITY TEST IN A TRIAXIAL CELL – ASTM D5084-16a							
Cell Pressure: (kPa)	460	Compaction:		95% NZ Standard			
Saturation Back Pressure: (kPa)	450	Solid Density: (t/n	m ³)	2.71			
Effective Confining Pressure: (kPa)	10	Temperature Dui	ring Test: (°C)	20.0			
Saturation by Pore Pressure Response: (B Value)	0.97	Permeant Liquid Used:		De-aired Tap Water			
Sample Status:	Initial		Final				
Sample Dimensions: (mm)	105.01 φ x 115.08		106.2 ¢ x 117.40				
Bulk Density: (t/m³)	1.94		1.96				
Water Content: (%)	18.7			25.9			
Dry Density: (t/m³)	1.63			1.56			
Saturation By Calculation: (%)	77		95				
Void Ratio: (e)	0.66		0.74				
Constant Head: (kPa)	3.0	5.0					
Hydraulic Conductivity: (k ₂₀)	1.7 x 10 ⁻⁹ r	m/s		2.1 x 10 ⁻⁹ m/s			

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005 and sampling.
- This report may not be reproduced except in full.

Tested By: N.P. Danischewski Date: 11-Jul-19 to 3-Aug-19

Checked By: emples

Page 4 of 4 Pages

Reference No: 19/1963-1

Date: 3 August 2019

<u>TEST REPORT – SMOOTH HILL LANDFILL INVESTIG</u>ATIONS

Client Details:	GHD, Level 3, 138 Victoria Street, Christchurch	Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations		
Sample Description:	Loess - Silty CLAY with minor sand and trace of gravel	Client Job No:	12506381
Sample Source:	BH5 @ 0.0m to 1.2m & BH7 @ 0.0m to 1.4m	Sample Depth:	Combined (0.0m to 1.4m)
Date & Time Sampled:	21-Jun-19	Sampled By:	M. Fitzmaurice
Sample Method:	Borehole	Date Received:	26-Jun-19

CONSTANT HEAD PERMEABILITY TEST IN A TRIAXIAL CELL – ASTM D5084-16a							
Cell Pressure: (kPa)	527	Compaction:		95% NZ Standard			
Saturation Back Pressure: (kPa)	450	Solid Density: (t/n	m ³)	2.71			
Effective Confining Pressure: (kPa)	77	Temperature Du	ring Test: (°C)	19.5			
Saturation by Pore Pressure Response: (B Value)	0.97	Permeant Liquid Used:		De-aired Tap Water			
Sample Status:	Initial		Final				
Sample Dimensions: (mm)	104.96 ¢ x 12	14.97	104.52 φ x 115.45				
Bulk Density: (t/m³)	1.94		2.03				
Water Content: (%)	18.7			24.3			
Dry Density: (t/m³)	1.63			1.64			
Saturation By Calculation: (%)	77		100				
Void Ratio: (e)	0.66		0.66				
Constant Head: (kPa)	3.0	5.0					
Hydraulic Conductivity: (k ₂₀)	5.6 x 10 ⁻¹⁰	m/s	5	5.3 x 10 ⁻¹⁰ m/s			

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005 and sampling.
- This report may not be reproduced except in full.

Tested By:
Checked By:

N.P. Danischewski

empleo

Date:

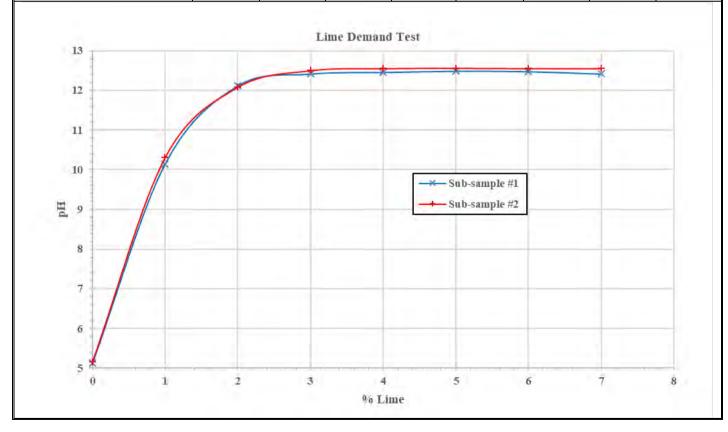
11-Jul-19 to 3-Aug-19

Approved Signatory

A.P. Julius

Laboratory Manager

Page 1 of 2 Pages


Reference No: 19/3782-1

Date: 7 January 2020

TEST REPORT - DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth		
Job Description:	DCC Smooth Hill Landfill Investigations				
Sample Description:	Loess	Client Order No:			
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, and BS013 @ 1.2m combined	BS010 @	0.7m, BS011	@ 1.3m, BS012 @ 0.4m	
Date & Time Sampled:	Unknown	Sample	l By:	GHD Ltd Staff	
Sample Method:	Unknown	Date Re	ceived:	6-Dec-19	

LIME DEMAND TES	Γ – NSW Tra	nsport; Road	ds & Maritim	e Services To	est Method T	144 (Not IAN	Z Accredited	l)
Sample Description:	Loess - Natural Soil Sub-sample #1			Loess - Natural Soil Sub-sample #2				
% Passing 2.36mm Test Sieve:	99.5%			99.5%				
Lime Type:	Taylors Hydrated Lime			Taylors Hydrated Lime				
pH of Lime Solution	12.60			12.63				
% Added Lime: (by dry mass)	0%	1%	2%	3%	4%	5%	6%	7%
pH Sub-sample #1:	5.12	10.15	12.12	12.42	12.46	12.49	12.48	12.42
pH Sub-sample #2:	5.16	10.31	12.08	12.50	12.55	12.56	12.55	12.55

Note:

Checked By:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith

emples

9 to 17-Dec-19 Date:

Page 2 of 2 Pages

Reference No: 19/3782-1

Date: 7 January 2020

TEST REPORT - DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth				
Job Description:	DCC Smooth Hill Landfill Investigations						
Sample Description:	Loess Client Order No: N/A						
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, and BS013 @ 1.2m combined	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined					
Date & Time Sampled:	Unknown	Sample	d By:	GHD Ltd Staff			
Sample Method:	Unknown	Date Re	ceived:	6-Dec-19			

Sample Description:	Loess - Natural Soil					
Water Content: (As Received)	25.0 %					
Sub-sample ID	#1	#2	#3	#4		
Liquid Limit: (LL)	41	41	41	41		
Plastic Limit: (PL)	25	25	25	25		
Plasticity Index: (PI)	16	16	16	16		

Note:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith 9 to 17-Dec-19 Date:

emples Checked By:

Approved Signatory

A.P. Julius **Laboratory Manager**

Page 1 of 1 Page

Reference No: 19/3782-2

Date: 17 January 2020

TEST REPORT - DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth				
Job Description:	DCC Smooth Hill Landfill Investigations						
Sample Description:	Loess Client Order No: N/A						
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, and BS013 @ 1.2m combined	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined					
Date & Time Sampled:	Unknown	Sample	d By:	GHD Ltd Staff			
Sample Method:	Unknown	Date Re	ceived:	6-Dec-19			

Sample Description:	Loess - Natural Soil						
Sub-sample ID:	#1	#2	#3	#4			
Sample Additive (By Dry Mass)	2.5% Lime	2.5% Lime	3.0% Bentonite	3.0% Bentonite			
Time Cured For:	1 day	7 days	1 day	7 days			
Liquid Limit: (LL)	54	55	42	40			
Plastic Limit: (PL)	30	32	23	23			
Plasticity Index: (PI)	24	23	19	17			

Note:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith Date: 9 to 17-Jan-20

emples Checked By:

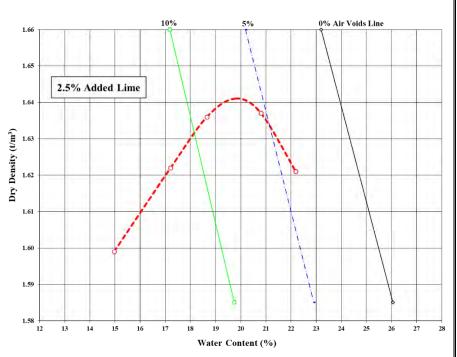
Approved Signatory

A.P. Julius **Laboratory Manager**

Page 1 of 4 Pages

Reference No: 19/3782-3

Date: 29 January 2020


TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth			
Job Description:	DCC Smooth Hill Landfill Investigations					
Sample Description:	Loess	Order No:	N/A			
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 2.5% Added Hydrated Lime (by dry mass)					
Date & Time Sampled:	Unknown	Sampled By:	GHD Ltd Staff			
Sample Method:	Unknown	Date Received:	6-Dec-19			

NZ STANDARD COMPACTION - NZS 4402:1986, Test 4.1.1

							H RESULTS		_	
	Retained: ım Test Siev	e)		0.0 %	1.66 ⊤			10%		
Maximu	aximum Dry Density:		Maximum Dry Density: 1.64 t/m ³		1.65					
Optimun	n Water Con	tent:	2	20.0 %		2.5%	Added Lime			
	Individu	ıal Resu	ılts		1.64				1 00	-
Water	Dry	Shear	r Strer	ngth (kPa)	E 1.63				1	
Content (%)	Density (t/m ³)	She Strei		Residual Strength	Density (t/m³)			1	1	
15.0	1.599	UI	T P	UTP				1	+	
17.2	1.622	UI	T P	UTP	Dry			1	1	
18.7	1.636	UI	T P	UTP	1.61 -		1			$\overline{}$
20.8	1.637	UI	T P	UTP	4.60		1			١
22.2	1.621	> 2	10	-	1.60		3			١
Notes:										

- The material was received in a natural state.
- The air voids lines were calculated from an assumed solid density of 2.70 t/m3.
- UTP = unable to penetrate.
- The material tested was whole soil.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By:

Date: 24 to 29-Jan-20

emples Checked By:

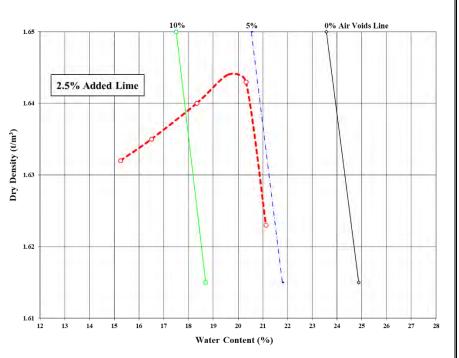
> All tests reported herein have been performed in accordance with the scope of the laboratory's accreditation

Page 2 of 4 Pages

Reference No: 19/3782-3

Date: 29 January 2020

TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS


Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth			
Job Description:	DCC Smooth Hill Landfill Investigations					
Sample Description:	Loess	Order No:	N/A			
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 2.5% Added Hydrated Lime (by dry mass)					
Date & Time Sampled:	Unknown	Sampled By:	GHD Ltd Staff			
Sample Method:	Unknown	Date Received:	6-Dec-19			

NZ STANDARD COMPACTION - NZS 4402:1986, Test 4.1.1

			SH	EAR ST	RENGTH	RESULTS	- NZGS	2001	
% Retained: (+19.0mm Test Sieve)		re)	0.0 %				10%		
Maximum Dry Density:			1.64 t/m ³						
Optimum Water Content:			20.0 %		2.5% Ac	dded Lime		100	
	Individu	al Results		1.64				3	
Water	Dry	Shear Str	ength (kPa)	n³)					
Content (%)	Density (t/m³)	Shear Strength	Residual Strength	Density (t/m³)		grand.			
15.3	1.632	UTP	UTP	Den 1.63					
16.5	1.635	UTP	UTP	Dry					
18.3	1.640	UTP	UTP						
20.3	1.643	> 210	-	1.62					
21.1	1.623	183	71	1.02					
Notes:									

- The material was received in a natural state.
- The air voids lines were calculated from an assumed solid density of 2.70 t/m³.
- *UTP* = unable to penetrate.
- The material tested was whole soil.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: C. Fisher

Date: 24 to 29-Jan-20

Checked By: emples

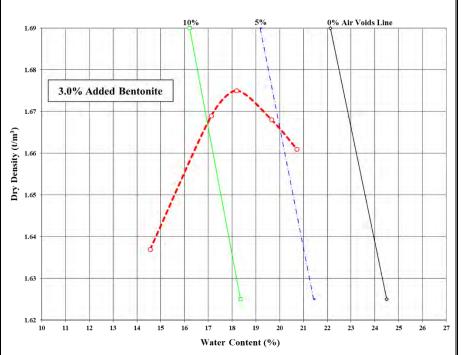
All tests reported herein have been performed in accordance with the scope of the laboratory's accreditation

Page 3 of 4 Pages

Reference No: 19/3782-3

Date: 29 January 2020

TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS


Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth			
Job Description:	DCC Smooth Hill Landfill Investigations					
Sample Description:	Loess	Order No:	N/A			
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 3.0% Added Bentonite (by dry mass)					
Date & Time Sampled:	Unknown	Sampled By:	GHD Ltd Staff			
Sample Method:	Unknown	Date Received:	6-Dec-19			

NZ STANDARD COMPACTION - NZS 4402:1986, Test 4.1.1

						RENGTH RE		,	
% Retained: (+19.0mm Test Sieve)			0.0 %		1,69 —	10%			
Maximum Dry Density:			1.67 t/m ³						
Optimum Water Content:			18.0 %		1.68	3.0% Added			
	Individu	ıal Resu	lts		1.67				1
Water	Dry	Shear	Shear Strength (kPa)		n³)			/	
Content (%)	Density (t/m ³)	She Strer		Residual Strength	Density (t/m³)			1	
14.6	1.637	UT	P	UTP				/	1
17.1	1.669	> 2	10	-	Ž. 1.65			/	+
18.2	1.675	> 2	10	-			1		١
19.7	1.668	> 2	10	-	1.64		- /		
20.7	1.661	18	3	123			3		
37 /					1				

Notes:

- The material was received in a natural state.
- The air voids lines were calculated from an assumed solid density of 2.70 t/m³.
- *UTP* = unable to penetrate.
- The material tested was whole soil.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: C. Fisher

24 to 29-Jan-20

Checked By: emples

All tests reported herein have been performed in accordance with the scope of the laboratory's accreditation

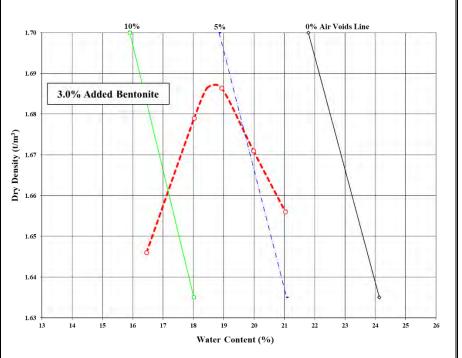
Date:

Page 4 of 4 Pages

Reference No: 19/3782-3

Date: 29 January 2020

TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS


Client Details:	GHD Ltd, P.O. Box 13468, Christchurch Attention: J. Southworth				
Job Description:	DCC Smooth Hill Landfill Investigations				
Sample Description:	Loess Order No: N/A				
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 3.0% Added Bentonite (by dry mass)				
Date & Time Sampled:	Unknown Sampled By: GHD Ltd S				
Sample Method:	Unknown	Date Received:	6-Dec-19		

			NZ STANI SH	DARD CO EAR STI						t 4.1.1
	Retained: nm Test Siev	ve)	0.0 %			1	0%		5%	
Maximu	Maximum Dry Density:		1.69 t/m ³	1.70						
Optimum Water Content:		ntent:	19.0 %	1.69	3.0%	Added Be	ntonite		1-9	į į
	Individual Results		1.68						i i	
Water	Dry	Shear Stre	ength (kPa)	13)				- /		1
Content (%)	Density (t/m³)	Shear Strength	Residual Strength	Density (t/m³)			\rightarrow	1		10
16.5	1.646	UTP	UTP	Den				/		Į.
18.0	1.679	> 210	-	Ž 1.66		+		\wedge		N.
18.9	1.686	> 210	-				1			
20.0	1.671	186	87	1.65			1			
22.0	1.656	147	81]			đ			
Notes:				1.64						

- The material was received in a natural state.
- The air voids lines were calculated from an assumed solid density of 2.70 t/m3.

emples

- UTP = unable to penetrate.
- The material tested was whole soil.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By:

Date: 24 to 29-Jan-20

Checked By:

Approved Signatory

A.P. Julius **Laboratory Manager**

All tests reported herein have been performed in accordance with the scope of the laboratory's accreditation

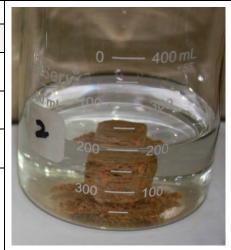
Page 1 of 5 Pages

Reference No: 19/3782-4

Date: 10 February 2020

TEST REPORT - DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch Attention: J. Southwort				
Job Description:	DCC Smooth Hill Landfill Investigations				
Sample Description:	Loess Order No: N/A				
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 2.5% Added Hydrated Lime (by dry mass) – 1 day curing				
Date & Time Sampled:	Unknown	Sam	pled By:	GHD Ltd Staff	
Sample Method:	Unknown	Date	Requested:	20-Jan-20	


	PI	NHOLE DISPERSIO	N TEST: ASTM D4647-13e1
Head	Elapsed Time	Flow Rate	Colour of Outflow
(mm)	(min)	(ml/s)	(Cloudiness)
50	5	0.43	Completely Clear
50	10	0.44	Completely Clear
180	15	0.67	Completely Clear
380	20	0.95	Completely Clear
1020	25	1.82	Completely Clear
Diameter of Hole at Start of Test:			1.0 mm
Diameter of Hole at End of Test:			1.0 mm
Water Content Prior	to Test:		20.0 %
Dry Density of Sample Tested:			1.56 t/m³
Pinhole Dispersion Classification – Method A: (1 Day Curing)			ND1 (Non-Dispersive)

CRUMB TEST: ASTM D6572-13e2 (Method B)	100

	· ·	•
Elapsed Time	Elapsed Time Estimated Slaking	
2 min	< 2%	Clear – no colloidal cloud evident
1 hr	≈ 5%	Clear – no colloidal cloud evident
6 hr	≈ 5% - 10%	Clear – no colloidal cloud evident

Crumb Test Classification: (1 Day Curing)

Grade 1 (Non-Dispersive)

Note:

- Distilled water was used in the pinhole dispersion and crumb test. Both tests were carried out on remoulded samples.
- The pinhole dispersion sample was compacted to 95% NZ standard compaction.
- Photograph at completion of the crumb test.
- The sample tested was the fraction passing the 2.00mm sieve.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith Date: 25-Jan-20 to 7-Feb-20

Checked By: emples

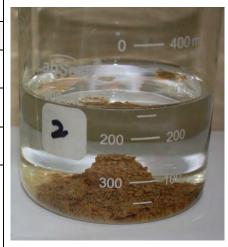
All tests reported herein have been performed in accordance with the scope of the laboratory's accreditation

Page 2 of 5 Pages

Reference No: 19/3782-4

Date: 10 February 2020

TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS


Client Details:	GHD Ltd, P.O. Box 13468, Christchurch Attention: J. Southworth				
Job Description:	DCC Smooth Hill Landfill Investigations				
Sample Description:	Loess Order No: N/A				
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 2.5% Added Hydrated Lime (by dry mass) – 7 days curing				
Date & Time Sampled:	Unknown	Sam	pled By:	GHD Ltd Staff	
Sample Method:	Unknown	Date	Requested:	20-Jan-20	

	Pl	NHOLE DISPERSIO	N TEST: ASTM D4647-13e1			
Head	Elapsed Time	Flow Rate	Colour of Outflow			
(mm)	(min)	(ml/s)	(Cloudiness)			
50	5	0.30	Completely Clear			
50	10	0.30	Completely Clear			
180	15	0.60	Completely Clear			
380	20	0.94	Completely Clear			
1020	25	1.73	Completely Clear			
Diameter of Hole at Start of Test:			1.0 mm			
Diameter of Hole at 1	End of Test:		1.0 mm			
Water Content Prior	to Test:		19.7 %			
Dry Density of Sample Tested:			1.56 t/m ³			
Pinhole Dispersion Classification – Method A: (7 Day Curing)			ND1 (Non-Dispersive)			

CRUMB TEST: ASTM D6572-13e2 (Method B)					
Elapsed Time	Estimated Slaking	Observations Recorded			
2 min	< 1%	Clear – no colloidal cloud evident			
1 hr	≈ 30%	Clear – no colloidal cloud evident			
6 hr	≈ 60%	Clear – no colloidal cloud evident			

Crumb Test Classification: (7 Day Curing)

Grade 1 (Non-Dispersive)

Note:

- Distilled water was used in the pinhole dispersion and crumb test. Both tests were carried out on remoulded samples.
- The pinhole dispersion sample was compacted to 95% NZ standard compaction.
- Photograph at completion of the crumb test.
- The sample tested was the fraction passing the 2.00mm sieve.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith Date: 25-Jan-20 to 7-Feb-20

Checked By:

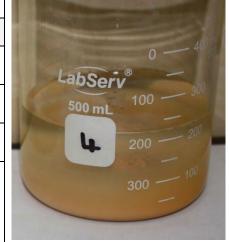
All tests reported herein have been performed in accordance with the scope of the laboratory's

accreditation

Page 3 of 5 Pages

Reference No: 19/3782-4

Date: 10 February 2020


TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch Attention: J. So				
Job Description:	DCC Smooth Hill Landfill Investigations				
Sample Description:	Loess Order No: N/A				
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 3.0% Added Bentonite (by dry mass) – 1 day curing				
Date & Time Sampled:	Unknown Sampled By: GHD Ltd		GHD Ltd Staff		
Sample Method:	Unknown	Date Requested:	20-Jan-20		

PINHOLE DISPERSION TEST: ASTM D4647-13e1				
Head (mm)	Elapsed Time (min)	Flow Rate (ml/s)	Colour of Outflow (Cloudiness)	
50	1	0.50	Dark	
50	3	1.23	Very Dark	
50	5	2.23	Very Dark	
Diameter of Hole at Start of Test:			1.0 mm	
Diameter of Hole at End of Test:			3.0 mm	
Water Content Prior to Test:			17.6 %	
Dry Density of Sample Tested:			1.60 t/m ³	

CRUMB TEST: ASTM D6572-13e2 (Method B)									
Elapsed Time	Estimated Slaking	Observations Recorded							
2 min	< 2%	Colloidal cloud evident around cube							
1 hr	≈ 55%	Heavy colloidal cloud ≈ 20mm deep covering entire bottom							
6 hr	≈ 80%	Heavy colloidal cloud ≈ 20mm deep covering entire bottom							

Crumb Test Classification: (1 Day Curing) Grade 4 (Dispersive)

Note:

- Distilled water was used in the pinhole dispersion and crumb test. Both tests were carried out on remoulded samples.
- The pinhole dispersion sample was compacted to 95% NZ standard compaction.
- Photograph at completion of the crumb test.
- The sample tested was the fraction passing the 2.00mm sieve.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith Date:

emples Checked By:

All tests reported herein have been performed in accordance with the scope of the laboratory's

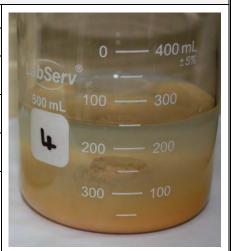
accreditation

25-Jan-20 to 7-Feb-20

Accreditation No: 434

Page 4 of 5 Pages

Reference No: 19/3782-4


Date: 10 February 2020

<u>TEST REPORT – DCC SMOOTH HILL INVESTIGATI</u>ONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations		
Sample Description:	Loess	Order No:	N/A
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 and BS013 @ 1.2m combined – 3.0% Added Bentonite (by dry materials)	· · · · · · · · · · · · · · · · · · ·	m, BS012 @ 0.4m
Date & Time Sampled:	Unknown	Sampled By:	GHD Ltd Staff
Sample Method:	Unknown	Date Requested:	20-Jan-20

PINHOLE DISPERSION TEST: ASTM D4647-13e1							
Head	Elapsed Time	Flow Rate	Colour of Outflow				
(mm)	(min)	(ml/s)	(Cloudiness)				
50	1	1.43	Very Dark				
50	3	2.33	Very Dark				
50	5	2.58	Very Dark				
Diameter of Hole at S	Start of Test:		1.0 mm				
Diameter of Hole at 1	End of Test:		4.0 mm				
Water Content Prior	to Test:		17.9 %				
Dry Density of Samp	le Tested:		1.60 t/m ³				
Pinhole Dispersion Classification – Method B: (7 Day Curing)			D (Dispersive)				

Elapsed Time Slaking	Observations Recorded
2 min < 1% Colloidal cl	
	oud evident around cube
	oidal cloud ≈ 20mm deep ring entire bottom
0 0	oidal cloud ≈ 20mm deep ring entire bottom
Crumb Test Classification: (7 Day Curing) Gra	nde 4 (Dispersive)

Note:

- Distilled water was used in the pinhole dispersion and crumb test. Both tests were carried out on remoulded samples.
- The pinhole dispersion sample was compacted to 95% NZ standard compaction.
- Photograph at completion of the crumb test.
- The sample tested was the fraction passing the 2.00mm sieve.

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith Date: 25-Jan-20 to 7-Feb-20

emples Checked By:

All tests reported herein have been performed in accordance with the scope of the laboratory's accreditation

Page 5 of 5 Pages

Reference No: 19/3782-4

Date: 10 February 2020

TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth				
Job Description:	DCC Smooth Hill Landfill Investigations						
Sample Description:	Loess	Order No:	N/A				
Sample Source:	BS01 @ 0.5m, BS03 @ 0.7m, BS07 @ 0.5m, BS08 @ 0.6m, BS010 @ 0.7m, BS011 @ 1.3m, BS012 @ 0.4m and BS013 @ 1.2m combined – 2.5% Added Hydrated Lime (by dry mass)						
Date & Time Sampled:	Unknown	Sampled By:	GHD Ltd Staff				
Sample Method:	Unknown	Date Requested:	20-Jan-20				

PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.2, 2.3 & 2.4								
Sample Description: Loess - 2.5% Added Hydrated Lime (by dry mass)								
Time Cured For: 28 days								
Liquid Limit: (LL)	53							
Plastic Limit: (PL)	30							
Plasticity Index: (PI)	23							
Note: The sample was received in a natural state. The plasticity index material tested was the fraction passing the 425 µm test sieve.								

General Notes:

- IANZ endorsement of this report applies to the samples as received.
- This report may not be reproduced except in full.

Tested By: L.T. Smith Date: 25-Jan-20 to 7-Feb-20

Approved Signatory

Checked By:

A.P. Julius

Laboratory Manager

Page 1 of 4 Pages

Reference No: 20/228

Date: 4 March 2020

TEST REPORT – DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	HD Ltd, P.O. Box 13468, Christchurch			
Job Description:	DCC Smooth Hill Landfill Investigations				
Sample Description:	Siltstone – Sandy SILT with minor clay	Client O	rder No:	Not Stated	
Sample Source:	BH05 @ 2.7m - 7.2m	Sample 1	Label No:	N/A	
Date & Time Sampled:	Unknown	Sampled	By:	GHD Ltd Staff	
Sample Method:	Borehole *	Date Rec	ceived:	December 2019	

					10%	6	4	5%		0% Air	Voids Line		
% Retained (+19.0mm Fraction)	1.78							i		\\	V Glus Line		
Water Content: ("All In" As Received)	3.7 %	F-1						1					
Maximum Dry Density: 1.7	1.76 t/m ³				 		0	1					
	£ 1.75			O'				1		1			
Optimum Water Content: 10	0.0 % ((m ₂)) 1.74					\perp		1					
	ens					1		į	1				
Notes:									1				
The sample was received in a n							\		1				
state.			0.00		 - 11		1		1 1		1		
The material tested in the NZ S Compaction test was whole soil										V			
The air voids lines were calculated a series with the series with the series were calculated as the series were calculate							1		Ţ	1	1		
an assumed solid density of 2.7									1	1			
							1		, I	~		\	
	1.70						1		i				
							-					8	
	1.69												

PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.2, 2.3 & 2.4								
Liquid Limit: (LL) 41								
Plastic Limit: (PL)	25							
Plasticity Index: (PI)	16							
Note: The sample was received in a natural state. The plasticity index material tested was the fraction passing the 425 µm test sieve.								

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

Date: Tested By: L.T. Smith, N.P. Danischewski, C. Fisher & C. Pearson 10-Jan-20 to 4-Mar-20

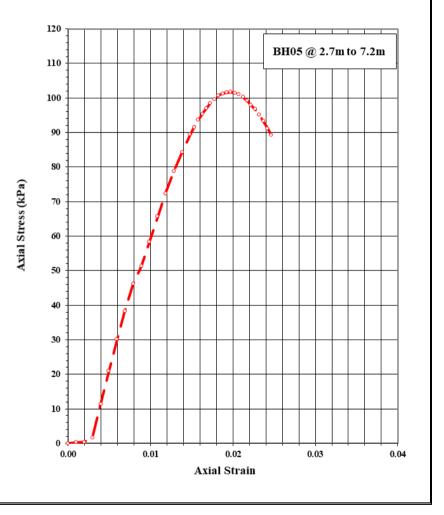
Checked By:

Tests indicated as Not Accredited are outside the scope of the laboratory's accreditation

Page 2 of 4 Pages

Reference No: 20/228

Date: 4 March 2020


TEST REPORT - DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch		Attention:	J. Southworth
Job Description:	DCC Smooth Hill Landfill Investigations			
Sample Description:	Siltstone – Sandy SILT with minor clay	Client O	rder No:	Not Stated
Sample Source:	BH05 @ 2.7m - 7.2m	Sample 1	Label No:	N/A
Date & Time Sampled:	Unknown	Sampled	By:	GHD Ltd Staff
Sample Method:	Borehole *	Date Rec	ceived:	December 2019

	UNCONFINED COM	PRESS	IVE S	TRE	NGT	ГН -	NZ	ZS 4	1402	2:19	986	, Te	st 6	.3.1	ĺ
Sample Diameter: (mm)	101.50														
Sample Length: (mm)	202.68		120											7	=
Length / Diameter Ratio:	2.00		110											4	_
Bulk Density: (t/m³)	1.94		100								₽°	0000	200		_
Water Content: (%)	15.9		90 -							ø				000	A
Dry Density (t/m³)	1.67								Í	/					
Mode of Failure:	Plastic / Plastic Brittle	2a)	80 -						,						
Strain @ Failure:	2.0 %	Axial Stress (kPa)	70					1					\dashv		_
Load @ Failure:	0.840 kN	l Stre	60				1	-					\dashv	\dashv	_
Unconfined Compressive Strength:	100 kPa	Axia	50 -				1						\square	\blacksquare	
		1				1	1								

Notes:

- Dry density rounded to the nearest 0.01 t/m3.
- The rate of axial compression was 0.40 mm/min.

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

Tested By: L.T. Smith, N.P. Danischewski, C. Fisher & C. Pearson Date: 10-Jan-20 to 4-Mar-20

emples Checked By:

> Tests indicated as Not Accredited are outside the scope of the laboratory's accreditation

Page 3 of 4 Pages

Reference No: 20/228

Date: 4 March 2020

TEST REPORT - DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch	Attention:	J. Southworth	
Job Description:	DCC Smooth Hill Landfill Investigations			
Sample Description:	Sands & Sandstone; SILT & SAND with minor clay	Client C	Order No:	Not Stated
Sample Source:	BH10 @ 2.4m - 7.0m	Sample	Label No:	N/A
Date & Time Sampled:	Unknown	Sample	d By:	GHD Ltd Staff
Sample Method:	Borehole *	Date Re	ceived:	December 2019

WAIEF	R CONTENT & DRY DE										St 2.1	α 4	1.1			
% Retained (+19.0mm Fraction)	8.0 %	1.87					1	0%		5%			0% A	ir Voids	Line	
Water Content: ("All In" As Received)	11.9 %	1.86	5					+					-			
Dry Density: (+19.0mm Fraction)	2.45 t/m ³	1.85	5				2-				10					
Absorption (+19.0mm Fraction)	3.7 %	Density (t/m³)	-								1			\setminus		
Maximum Dry Density: (-19.0mm Fraction)	1.85 t/m ³	y Density	3							-	1	1		-		
Optimum Water Content: (-19.0mm Fraction)	14.0 %	1.82	2						\downarrow			1				
Notes:		1.81							$-\lambda$			j.				
 The sample was received state. The material tested in the Compaction test was the a 19.0mm test sieve. 	ne NZ Standard	1.80)							A.		1	-		1	
 The air voids lines were calculated from an assumed solid density of 2.70 t/m³. 			6	7 :	8 9	9 1	0 1	-	2 1	3 14 tent (%		5 1	6 1	7 1	8 19	9

PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.2, 2.3 & 2.4							
Liquid Limit: (LL) 37							
Plastic Limit: (PL)	23						
Plasticity Index: (PI)	14						
Note: The sample was received in a natural state. The plasticity index material tested was the fraction passing the 425 µm test sieve.							

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

L.T. Smith, N.P. Danischewski, C. Fisher & C. Pearson Tested By: Date: 10-Jan-20 to 4-Mar-20

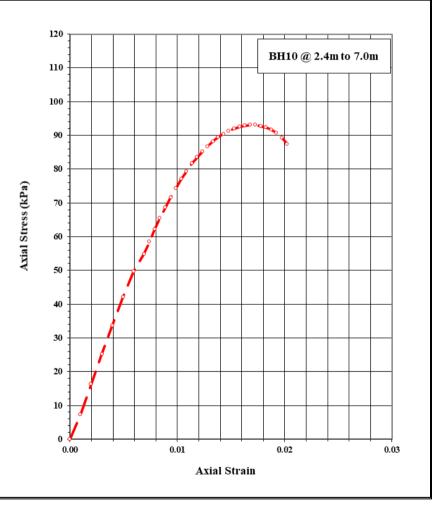
emples Checked By:

> Tests indicated as Not Accredited are outside the scope of the laboratory's accreditation

Page 4 of 4 Pages

Reference No: 20/228

Date: 4 March 2020


TEST REPORT - DCC SMOOTH HILL INVESTIGATIONS

Client Details:	GHD Ltd, P.O. Box 13468, Christchurch			J. Southworth	
Job Description:	CC Smooth Hill Landfill Investigations				
Sample Description:	Sands & Sandstone; SILT & SAND with minor clay	Client (Order No:	Not Stated	
Sample Source:	ample Source: BH10 @ 2.4m - 7.0m		Label No:	N/A	
Date & Time Sampled:	Unknown	Sample	d By:	GHD Ltd Staff	
Sample Method:	Borehole *	Date Re	ceived:	December 2019	

											_
	UNCONFINED COM	PRESSIVE S	TREN	GTH -	NZS	440	2:19	986,	Test	6.3.	1
Sample Diameter: (mm)	101.49										
Sample Length: (mm)	202.66	120									I
Length / Diameter Ratio:	2.00	110	1							-	_
Bulk Density: (t/m³)	2.00	100	1								
Water Content: (%)	13.9	90	1					تقوی	0000	ഛം	صو
Dry Density (t/m³)	1.76	80					8	و م			
Mode of Failure:	Plastic / Plastic Brittle	kPa)	1			ا م					
Strain @ Failure:	1.7 %	Axial Stress (kPa)			ļ	8					
Load @ Failure:	0.767 kN	ial Str 90	1		j'						
Unconfined Compressive Strength:	93 kPa	XY 50	1		/						
			1	ء ا							

Notes:

- Dry density rounded to the nearest 0.01 t/m3.
- 2. The rate of axial compression was 0.40 mm/min.

Tests indicated as

Note:

- Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, the sample method * and sampling.
- This report may not be reproduced except in full.

Tested By: L.T. Smith, N.P. Danischewski, C. Fisher & C. Pearson Date: 10-Jan-20 to 4-Mar-20

Checked By:

Approved Signatory

A.P. Julius

Laboratory Manager

Not Accredited are outside the scope of the laboratory's accreditation

This report has been prepared by Matt Fitzmaurice, John Southworth and Dhugal McQuistan under the direction of Samantha Webb, a Technical Director and Engineering Geologist with GHD Ltd. Matt has 9 years as an engineering geologist, John has 23 years experience as an engineering geologist and Dhugal has 4 years experience as a geotechnical engineer. Samantha has 30 years in all aspects of engineering geology including a number of landfill projects and has the following qualifications BSc (Hons) Earth Sciences and MSc Engineering Geology.

GHD

Level 4 Security Building 115 Stuart Street T: 64 3 378 0991 F: E:

© GHD 2020

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

H:\Smooth Hill\12506381_Smooth Hill Landfill Consenting_GFR_VerA_200520.docx

Document Status

Revision	Author	Reviewer		Approved for Issue						
		Name	Signature	Name	Signature	Date				
Rev01	M. Fitzmaurice/ J. Southworth	S.Webb	Shapp	S.Douglass	Josep 5	17-8- 20				

www.ghd.com

